Causal Inference in the Presence of Unmeasured Confounders

Motivation.

- Average Causal Effect (ACE) := $\mathbb{E}[Y^1 Y^0]$
- In the presence of unmeasured confounders, ACE is not identified.
- The front-door model [2] offers an alternative strategy to identify ACE.
- This work focuses on providing a flexible and robust estimation framework for ACE using the front-door functional.

Target parameter. $\psi \coloneqq \mathbb{E}[Y^{a_0}], a_0 \in \{0, 1\}$

Identification assumptions.

- 1. No direct effect: $Y^{a,m} = Y^m, \forall a, m;$
- 2. Conditional ignorability: $M^a \perp A \mid X \And Y^m \perp M \mid A, X$; (Encoded assumptions)
- 3. Consistency: $M^a = M$ when A = a and $Y^m = Y$ when M = m;
- 4. Positivity: P(A = 1 | X = x) > 0, P(M = m | A = a, X = x) > 0, $\forall a, m, x$.

Identification functional for the target parameter.

- Let P(O) = P(X, A, M, Y) denote observed data distribution. • Let $\mu(m, a, x) = \mathbb{E}_{P}[Y \mid m, a, x]$, and $\pi(a \mid x) = P(a \mid X)$, and $p_{M|A,X}(m \mid a_0, x) = P(M = m \mid A = a_0, X = x) \text{ and } p_X(x) = P(X = x).$

$$\psi(P) = \iint \sum_{a=0}^{1} \mu(m, a, x) \pi(a \mid x) p_{M|A, X}(m \mid a_0, x) p_X(x) dm dx$$

Existing estimation strategies.

- Let $Q = \{\mu, \pi, p_{M|A,X}\}$ contain the nuisance functionals.
- ► Plug-in estimator: $\psi(\hat{Q}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{m} \sum_{a=0}^{1} \hat{\mu}(m, a, X_i) \hat{\pi}(a \mid X_i)$
- First order bias: $\psi(\hat{Q}) = \psi(Q) P\Phi(\hat{Q}) + R_2(\hat{Q}, Q)$.
- Efficient influence function:

$$\Phi(Q)(O_{i}) = \underbrace{\frac{p_{M|A,X}(a_{0}, X_{i})}{p_{M|A,X}(A_{i}, X_{i})} \{Y_{i} - \mu(M_{i}, A_{i}, X_{i})\}}_{\Phi_{Y}(Q)(O_{i})} + \underbrace{\{\eta(1, X_{i}) - \eta(0, X_{i})\}}_{\Phi_{A}(Q)(O_{i})} \{A_{i} - \pi(1 \mid X_{i})\}}_{\Phi_{A}(Q)(O_{i})} + \underbrace{\{\eta(1, X_{i}) - \eta(0, X_{i})\}}_{\Phi_{A}(Q)(O_{i})} \{A_{i} - \pi(1 \mid X_{i})\}}_{\Phi_{A}(Q)(O_{i})} + \underbrace{\{\eta(X_{i}) - \psi(Q)}_{\Phi_{X}(Q)(O_{i})}}_{\Phi_{X}(Q)(O_{i})}.$$
(1)

where $\xi(M, X) = \sum_{a=0} \mu(M, a, X) \pi(a | X), \eta(A, X) = \int \mu(m, A, X) p_{M|A, X}(m | a_0, X) dm$, $\theta(X) = \int \xi(m, X) p_{M|A,X}(m \mid a_0, X) dm.$

• Doubly robust one-step estimator [1]: $\psi^+(\hat{Q}) = \psi(\hat{Q}) + \psi(\hat{Q})$

Our approach: Targeted Minimum Loss Based Estimation (TMLE).

• Update $\hat{Q} \implies Q_n^*$ such that $P_n \Phi(Q_n^*) \approx 0$.

Targeted Machine Learning for Average Causal Effect Estimation Using the Front-Door Functional Anna Guo, David Benkeser, and Razieh Nabi Dept. of Biostatistics & Bioinformatics, Emory University

(front-door model)

dx (target estimand)

$$\hat{p}_{M|A,X}(m \mid a_0, X_i).$$

$$+ P_n \Phi(\hat{Q}).$$

Targeted Minimum Loss Based Estimation (TMLE) Procedure

Binary mediator

 $p_{M|A,X}(1 \mid a_0, X; \varepsilon_m) = \exp \left\{ \operatorname{logit} p_{M|A,X}(1 \mid a_0) \right\}$

3. Update nuisance estimates by solving optimization problem:

$$\varepsilon_m^{(t)} = \arg\min_{\varepsilon_m} \sum_{i=1}^n L(p_{M|A,X})(A_i, X_i; \varepsilon_m).$$

- Iterative update of $\pi(A \mid X)$ and $p_{M \mid A, X}$:
- Define auxiliary covariates $H_m^{(t)}$:

 $H_m^{(t)} \coloneqq \frac{1}{\pi^{(t)}(a_0 \mid X)}$

- Then fit the following logistic regressions without an intercept: $M \sim \text{offset} \left(\text{logit} p' \right)$
- Repeat the optimization step until
- Update $\mu(M, A, X)$ in one step.
- 4. Return $\psi^1(Q_n^*) = P_n[\theta(X; \mu^{(1)}, p_{M|A,X}^{(t)}, \pi^{(t)}]$ as the TMLE estimator.

Continuous mediator

- Density estimation for $p_{M|A,X}$ is needed.
- Optimization for $p_{M|A,X}$ can no longer be solved by regression.

Multivariate mediators

- Density estimation for $p_{M|A,X}$ is computational intensive.
- TMLE targeting $\theta(X)$ instead of $p_{M|A,X}$:

Density ratio estimation: (i) nonparametric estimation; (ii) regression $p_{M|A,X}^{r}(M \mid A, X) \coloneqq \frac{p_{M|A,X}(a_0, X)}{p_{M|A,X}(A, X)} = \frac{P(A = a_0 \mid X, M)}{P(A \mid X, M)} \times \frac{P(A \mid X)}{P(A = a_0 \mid X)}.$

Equally applicable to continuous mediators.

$$\begin{array}{l} 1 \mid a_0, X \end{pmatrix} + (1 - N) \log(1 - p_{M|A,X}(1 \mid a_0, X)) \\ a_0, X) + \varepsilon_m \frac{1}{\pi(a_0 \mid X)} \Big(\xi(1, X) - \xi(0, X) \Big) \Big\}, \ \varepsilon_m \in \mathbb{R} \end{array}$$

$$-(\xi^{(t)}(1, X) - \xi^{(t)}(0, X)).$$

$$\mathcal{D}_{M|A,X}^{(t)}(1 \mid a_0, X)) + H_m^{(t)}.$$

 $\varepsilon_m^{(t)} = 0.$

Asymptotic Behaviours and Robustness Properties

Binary & Continuous mediators

$$\begin{cases} \int [\widehat{\pi}(1 \mid \mathbf{x})] \\ \begin{cases} \int [\widehat{p}_{M \mid A, \mathbf{x}}(\mathbf{x})] \\ \end{cases} \end{cases}$$

Under standard regularity conditions, we have

convergence:

• All nuisances converge to the respective truth at a slower rate of $o_P(n^{-\frac{1}{4}})$.

Multivariate mediators

- convergence:

Simulations

	Proposed TMLE estimators			One-step EIF estimator				
	Binary M	Continuous M	Multivariate M	Binary M	Continuous M	Multivariate M		
ATE bias (SD)	0 (0.034)	0 (0.106)	-0.004 (0.153)	0 (0.034)	0 (0.105)	0.213 (7.771)		
$E(Y^1)$ bias (SD)	-0.001 (0.054)	0.001 (0.092)	0 (0.114)	-0.001 (0.054)	0.001 (0.091)	0.076 (5.142)		
$E(Y^0)$ bias (SD)	-0.001 (0.058)	0.001 (0.091)	0.005 (0.124)	-0.001 (0.058)	0.001 (0.091)	-0.137 (5.917)		
Note: ψ^1 is adopted under binary and continuous mediators, and ψ^2 is adopted under multivariate mediator.								

Positivity violation

Table 2. Comparison between TMLE estimators and one-step EIF estimator under binary, continuous, and multivariate mediators in the presence of weak overlapping.

	Proposed TMLE estimators			One-step EIF estimator				
	Binary M	Continuous M	Multivariate M	Binary M	Continuous M	Multivariate M		
ATE bias (SD)	0.006 (0.068)	-0.003 (0.719)	0.008 (0.85)	0.024 (1.024)	-0.089 (1.015)	-2.41 (49.788)		
$E(Y^1)$ bias (SD)	0 (0.05)	0.006 (0.241)	0.01 (0.248)	-0.002 (0.064)	0.002 (0.133)	0.116 (10.027)		
$E(Y^0)$ bias (SD)	-0.006 (0.078)	0.009 (0.682)	0.002 (0.811)	-0.026 (1.023)	0.091 (1.009)	2.526 (49.481)		
Note: ψ^1 is adopted under binary mediator, and ψ^2 is adopted under continuous and multivariate mediators.								

References

EMORY

Assume nuisance estimates have the convergence rates as follows:

$$-\pi(1|x)]^2 dP(x) \bigg\}^{1/2} = O_P(n^{-\frac{1}{k}}),$$

$$m | a, x) - p_{M|A,X}(m | a, x)]^2 dP(x, a, m) \Big\}^{1/2} = o_P(n^{-\frac{1}{b}})$$

 $= O_P(n^q).$ $(\mathbf{x}, \mathbf{x}) - \mu(\mathbf{m}, \mathbf{a}, \mathbf{x})]^{-} dP(\mathbf{x}, \mathbf{a}, \mathbf{m})$

$$\mathbf{R}^{2}(\mathbf{P}_{n}^{*},\mathbf{P}) \leq \mathbf{O}_{P}\left(n^{\max\left\{-\left(\frac{1}{b}+\frac{1}{q}\right),-\left(\frac{1}{b}+\frac{1}{k}\right)\right\}}\right)$$

• Asymptotically efficient if following nuisances combinations achieve $o_P(n^{-\frac{1}{2}})$

(iii) { $\mu(\mathbf{M}, \mathbf{A}, \mathbf{X}), \pi(\mathbf{A} \mid \mathbf{X})$ }. $p_{M|A,X}(M \mid A, X),$

• Asymptotically efficient if following nuisances combinations achieve $o_P(n^{-\frac{1}{2}})$

(i) { $\pi(A \mid X), \mu(M, A, X)$ }, (ii) { $\theta(X; \widehat{\xi}), \eta(a^*, X; \widehat{\mu}), \mu(M, A, X)$ } $(iii) \{\pi(A \mid X), p_{M|A,X}^{r}(M \mid A, X)\}, \quad (iv) \{\theta(X; \widehat{\xi}), \eta(a^{*}, X; \widehat{\mu}), p_{M|A,X}^{r}(M \mid A, X)\}.$ • All nuisances converge to the respective truth at a slower rate of $o_P(n^{-\frac{1}{4}})$.

Table 1. Comparison between TMLE estimators and one-step EIF estimator under binary, continuous, and multivariate

[1] Isabel R. Fulcher, Ilya Shpitser, Stella Marealle, and Eric J. Tchetgen Tchetgen. Robust inference on population indirect causal effects: The generalized front-door criterion. Journal of the Royal Statistical Society, Series B, 2019. [2] Judea Pearl. Causal diagrams for empirical research. *Biometrika*, 82(4):669–688, 1995.