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Causal Inference in the Presence of Unmeasured Confounders

Motivation.
▸ Average Causal Effect (ACE) ∶= E[Y 1 −Y 0]
▸ In the presence of unmeasured confounders,

ACE is not identified.
▸ The front-door model [2] offers an alternative

strategy to identify ACE.
▸ This work focuses on providing a flexible and

robust estimation framework for ACE using the
front-door functional.
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Identification assumptions.

1. No direct effect: Y a,m = Y m, ∀a,m;

2. Conditional ignorability: Ma ⊥ A ∣ X & Y m ⊥M ∣ A,X ;

3. Consistency: Ma =M when A = a and Y m = Y when M =m;

4. Positivity: P(A = 1 ∣ X = x) > 0, P(M =m ∣ A = a,X = x) > 0, ∀a,m,x .

Identification functional for the target parameter.

▸ Let P(O) = P(X ,A,M,Y ) denote observed data distribution.
▸ Let µ(m,a,x) = EP[Y ∣m,a,x], and π(a ∣ x) = P(a ∣ X), and

pM ∣A,X(m ∣ a0,x) = P(M =m ∣ A = a0,X = x) and pX(x) = P(X = x).

ψ(P)=∬
1

∑
a=0

µ(m,a,x) π(a ∣ x) pM ∣A,X(m ∣ a0,x) pX(x) dm dx (target estimand).

Existing estimation strategies.

▸ Let Q = {µ,π,pM ∣A,X} contain the nuisance functionals.

▸ Plug-in estimator: ψ(Q̂) = 1
n

n

∑
i=1
∑
m

1

∑
a=0

µ̂(m,a,Xi) π̂(a ∣ Xi) p̂M ∣A,X(m ∣ a0,Xi).

▸ First order bias: ψ(Q̂) = ψ(Q) −PΦ(Q̂) +R2(Q̂,Q).
▸ Efficient influence function:

Φ(Q)(Oi) =
pM ∣A,X(a0,Xi)
pM ∣A,X(Ai,Xi)

{Yi − µ(Mi,Ai,Xi)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ΦY(Q)(Oi)

+ I(Ai = a0)
π(a0 ∣ Xi)

{ξ(Mi,Xi) − θ(Xi)}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ΦM(Q)(Oi)

+ {η(1,Xi) − η(0,Xi)} {Ai − π(1 ∣ Xi)}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΦA(Q)(Oi)

+ θ(Xi) − ψ(Q)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ΦX(Q)(Oi)

. (1)

where
ξ(M,X) =

1

∑
a=0
µ(M,a,X)π(a ∣ X), η(A,X) = ∫µ(m,A,X)pM ∣A,X(m ∣ a0,X) dm,

θ(X) = ∫ ξ(m,X)pM ∣A,X(m ∣ a0,X) dm.

▸ Doubly robust one-step estimator [1]: ψ+(Q̂) = ψ(Q̂) +PnΦ(Q̂).

Our approach: Targeted Minimum Loss Based Estimation (TMLE).

▸ Update Q̂ Ô⇒ Q∗n such that PnΦ(Q∗n) ≈ 0.

Targeted Minimum Loss Based Estimation (TMLE) Procedure

Binary mediator

1. Obtain initial nuisance estimates: π(0)(A ∣ X),p(0)M ∣A,X and µ(0)(M,A,X).
2. Define loss functions and parametric fluctuations:
▸ loss function L(Q̃)(O): P = argminP̃ PL(P̃)(O).
▸ parametric submodel {P0

n,ϵ ∶ ϵ ∈ R}: P0
n,ϵ=0 = P0

n,
d
dϵL(P0

n,ϵ)∣ϵ=0 = Φ(P
0
n).

L(pM ∣A,X)(A,X) = −I(A = a0){M logpM ∣A,X(1 ∣ a0,X) + (1 −M) log(1 − pM ∣A,X(1 ∣ a0,X)}

pM ∣A,X(1 ∣ a0,X ; εm) = expit{ logitpM ∣A,X(1 ∣ a0,X) + εm
1

π(a0 ∣ X)
(ξ(1,X) − ξ(0,X))}, εm ∈ R

3. Update nuisance estimates by solving optimization problem:

ε
(t)
m = argminεm

n

∑
i=1

L(pM ∣A,X)(Ai,Xi; εm).

▸ Iterative update of π(A ∣ X) and pM ∣A,X :

– Define auxiliary covariates H(t)m :

H(t)m ∶=
1

π(t)(a0 ∣ X)
(ξ(t)(1,X) − ξ(t)(0,X)).

– Then fit the following logistic regressions without an intercept:

M ∼ offset (logitp(t)M ∣A,X(1 ∣ a0,X)) +H(t)m .

– Repeat the optimization step until ε(t)m = 0.
▸ Update µ(M,A,X) in one step.

4. Return ψ1(Q∗n) = Pn[θ(X ;µ(1),p(t)M ∣A,X , π
(t)] as the TMLE estimator.

Continuous mediator
▸ Density estimation for pM ∣A,X is needed.

▸ Optimization for pM ∣A,X can no longer be solved by regression.

Multivariate mediators
▸ Density estimation for pM ∣A,X is computational intensive.

▸ TMLE targeting θ(X) instead of pM ∣A,X :
▸ Density ratio estimation: (i) nonparametric estimation; (ii) regression

pr
M ∣A,X(M ∣ A,X) ∶=

pM ∣A,X(a0,X)
pM ∣A,X(A,X)

= P(A = a0 ∣ X ,M)
P(A ∣ X ,M) × P(A ∣ X)

P(A = a0 ∣ X)
.

▸ Equally applicable to continuous mediators.

Asymptotic Behaviours and Robustness Properties

Binary & Continuous mediators
Assume nuisance estimates have the convergence rates as follows:

{∫ [π̂(1 ∣ x) − π(1 ∣ x)]2 dP(x)}
1/2
= oP(n−

1
k),

{∫ [p̂M ∣A,X(m ∣ a,x) − pM ∣A,X(m ∣ a,x)]
2
dP(x ,a,m)}

1/2
= oP(n−

1
b),

{∫ [µ̂(m,a,x) − µ(m,a,x)]2 dP(x ,a,m)}
1/2
= oP(n−

1
q).

Under standard regularity conditions, we have

R2(P∗n,P) ≤ oP (nmax{−(1b+1q),−(1b+1k)}) .

▸ Asymptotically efficient if following nuisances combinations achieve oP(n−
1
2)

convergence:
(i) pM ∣A,X(M ∣ A,X), (ii) {µ(M,A,X), π(A ∣ X)}.

▸ All nuisances converge to the respective truth at a slower rate of oP(n−
1
4).

Multivariate mediators
▸ Asymptotically efficient if following nuisances combinations achieve oP(n−

1
2)

convergence:
(i) {π(A ∣ X), µ(M,A,X)}, (ii) {θ(X ; ξ̂), η(a∗,X ; µ̂), µ(M,A,X)}
(iii) {π(A ∣ X), pr

M ∣A,X(M ∣ A,X)}, (iv) {θ(X ; ξ̂), η(a∗,X ; µ̂), pr
M ∣A,X(M ∣ A,X)}.

▸ All nuisances converge to the respective truth at a slower rate of oP(n−
1
4).

Simulations

Positivity violation
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