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Abstract

Evaluating the average causal effect (ACE) of a treatment on an outcome often involves overcoming the

challenges posed by confounding factors in observational studies. A traditional approach uses the back-door

criterion, seeking adjustment sets to block confounding paths between treatment and outcome. However, this

method struggles with unmeasured confounders. As an alternative, the front-door criterion offers a solution, even

in the presence of unmeasured confounders between treatment and outcome. This method relies on identifying

mediators that are not directly affected by these confounders and that completely mediate the treatment’s effect.

Here, we introduce novel estimation strategies for the front-door criterion based on the targeted minimum

loss-based estimation theory. Our estimators work across diverse scenarios, handling binary, continuous, and

multivariate mediators. They leverage data-adaptive machine learning algorithms, minimizing assumptions and

ensuring key statistical properties like asymptotic linearity, double-robustness, efficiency, and valid estimates

within the target parameter space. We establish conditions under which the nuisance functional estimations

ensure the n1/2-consistency of ACE estimators. Our numerical experiments show the favorable finite sample

performance of the proposed estimators. We demonstrate the applicability of these estimators to analyze the

effect of early stage academic performance on future yearly income using data from the Finnish Social Science

Data Archive.
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1. Introduction

The average causal effect (ACE) is a key parameter for quantifying the cause-effect relationship between

a treatment and a response variable. This parameter measures the difference in the average of potential

outcomes that would have occurred if the treatment was administered compared to if it was not. One

approach commonly used to identify the ACE is the back-door adjustment, which involves identifying a set

of variables that would block all the confounding paths between the treatment and the outcome [Pearl, 2009].

The resulting back-door adjustment functional is also known as g-formula [Robins, 1986, Hahn, 1998] and

enjoys an inverse probability of treatment weighted (IPTW) representation [Hirano et al., 2003]. There exists

a rich literature on how to estimate the back-door adjustment functional with proposals ranging from simple

plug-in or IPTW estimators to more complicated estimators such as augmented IPTW or targeted minimum

loss based estimators (TMLEs), which are obtained using semiparametric efficiency theory [Bickel et al.,

1993, van der Vaart, 2000, Tsiatis, 2007, Robins et al., 1994a, van der Laan et al., 2011, Chernozhukov et al.,

2017].

Finding a sufficient back-door adjustment set in observational studies can be challenging as there are

often unmeasured factors impacting the causal relationship between the treatment and outcome. Various

approaches are commonly employed to address this issue. These include the use of instrumental variables
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[Balke and Pearl, 1994], conducting sensitivity analysis [Robins et al., 2000, Scharfstein et al., 2021],

or deriving nonparametric bounds [Manski, 1990]. An alternative strategy involves the use of directed

acyclic graphs (DAGs) with hidden/unmeasured variables to encode independence restrictions between

counterfactual and observed variables within a nonparametric model [Tian and Pearl, 2002, Richardson

and Robins, 2013]. This graphical approach has led to the development of sound and complete algorithms

for identifying causal parameters based on the observed data distribution [Shpitser and Pearl, 2006, Huang

and Valtorta, 2006, Richardson et al., 2017, Bhattacharya et al., 2022]. These identification algorithms take

a hidden variable DAG as input and determine whether the ACE can be identified as a function of a joint

distribution defined solely over observed variables. If identification is possible, the algorithm provides an

identifying functional that captures the ACE.

The front-door model is perhaps the simplest example of a DAG with unmeasured confounders where

no valid back-door adjustment set exists, yet the causal effect can still be identifiable [Pearl, 1995a]. In this

model, the ACE identification relies on measuring one or more mediating variables that satisfy two conditions:

(i) the treatment-mediators and mediators-outcome relations are free from unmeasured confounders, and (ii)

the effect of treatment on outcome is fully mediated through such variables. Empirical evaluations suggest

that employing front-door adjustment can yield reasonable estimates of causal effects in real-world scenarios

where the presence of unmeasured confounding between treatment and outcome is expected [Glynn and

Kashin, 2013, 2018, Bellemare et al., 2019, Bhattacharya and Nabi, 2022].

A nonparametric efficient estimator for the front-door functional was proposed by Fulcher et al. [2019].

The proposed estimator is built based on parametric working models for three key nuisance parameters: the

conditional mean outcome, the conditional distribution of the mediator(s), and the conditional probability

of the treatment. While the estimator relies on parametric working models, it enjoys a double-robustness

property. While this estimator marked an important contribution to the literature on estimation of the

front-door functional, several critical considerations, both technical and practical, remain.

First, the work by Fulcher et al. [2019] focuses on estimators of the front-door functional built using

simple nuisance estimates based on parametric working models. While such working models are appealing in

their simplicity, their utility may be limited in settings where more flexible model specifications are required.

Indeed, the ability to naturally incorporate flexible learners is generally seen as a strength of doubly robust

estimators of causal effects. This ability stems from a specific product structure in the second-order remainder

term that results from a linear approximation of the target parameter in the selected model. Unfortunately,

the work of Fulcher et al. [2019] did not provide the form of this remainder and therefore it is an open question

as to the specific large-sample conditions required to ensure standard asymptotic behavior of estimators when

flexible estimators are used.

Second, the work of Fulcher et al. [2019] focuses primarily on estimation settings in which the mediator

is a single variable. In these simple settings, the conditional distribution of the mediator can generally be

achieved through either simple regression, when the mediator is binary, or via a parametric specification of the

mediator density such as Gaussian, when the mediator is continuous. However, restriction of the estimation

problem to settings where only a single mediator is available severely diminishes the applicability of the front-

door model in practical settings. In most realistic settings, multiple mediators, which may include binary,

categorical, and/or continuous variables, will need to be considered to satisfy the assumption of the front-door

model that the mediators fully mediate the treatment effect. Adopting the estimation strategy by Fulcher

et al. [2019] involves modeling the density of the mediators, which may become practically very difficult

in settings with multiple mediators. We are therefore motivated to pursue alternative nuisance parameter

estimation strategies that more readily accommodate such complexities.

Finally, while the estimator suggested by Fulcher et al. [2019] is appealing in its straightforward and closed-

form construction, the estimator may result in estimates of the front-door functional that are outside of the

target parameter space. This is a general concern with one-step estimators in practice, particularly in settings

with near positivity violations. Thus, we are motivated to consider targeted minimum loss based estimators

(TMLEs) of the front-door functional, which may exhibit more robust behavior in these challenging settings

[van der Laan et al., 2011].

In sum, our work looks to extend the foundational work of Fulcher et al. [2019] so that both the underlying

theory, as well as the practical implementations of estimators make the approach applicable in a greater
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variety of settings. First, we propose a TMLE version of the estimator in the setting considered in Fulcher

et al. [2019] – a univariate mediator where the mediator density needs to be estimated. While the TMLE has

the same asymptotic behavior as that of Fulcher et al. [2019], it has the additional finite-sample property

that it will always obey bounds on the parameter space. Second, we provide novel estimators that are more

suited to multivariate mediators of mixed variable types. Moreover, for all our proposed estimators, we

provide a suitable form of the second-order remainder term that allows us to establish formal conditions that

are sufficient for asymptotically efficient estimation of the front-door functional. The proposed methods are

demonstrated to have favorable finite-sample performance through various numerical experiments and are

illustrated by estimating the effect of early stage academic performance on future yearly income using data

from the Finnish Social Science Data Archive collected between 1971 and 2002. We have further developed the

fdtmle package in R, specifically designed for conducting causal inference using the front-door criterion. This

package represents a significant advancement in analytical capabilities and is readily available for download

at Github repository: annaguo-bios/fdtmle.

The paper is organized as follows. We first describe a brief overview of the front-door model and the

underlying identification assumptions in Section 2. We review the previous proposals on estimation of the

front-door functional via one-step corrected estimation in Section 3. We discuss our TMLE approaches in

Section 4, followed by a discussion on asymptotic properties of our proposed estimators in Section 5. Section 6

contains our simulation analyses, followed by our real data analysis. Concluding remarks are provided in

Section 7. All proofs are deferred to supplementary materials.

2. Preliminaries: front-door model and identification assumptions

Let A denote the observed treatment and Y denote the observed outcome of interest. In this paper, we

assume the treatment is binary, with A = 1 representing the treatment arm and A = 0 representing the

control arm. We use Y a to denote the potential outcome if the treatment variable was assigned the value

a ∈ {0, 1} [Neyman, 1923, Rubin, 1974]. These potential outcomes are also referred to as counterfactuals.

Let Pa denote the probability distribution of the counterfactual Y a and let pa denote its density function

with respect to some dominating measure. For simplicity, we will assume continuous-valued variables have

a density with respect to Lebesgue measure, though this is not required for our developments. The ACE is

defined as ACE := EP 1(Y 1)− EP 0(Y 0), where EP a [Y a] =
∫
y pa(y) dy is used to denote the expectation of

Y a.

A common approach to identification of ACE as a function of observed data is to assume the following

conditions: (i) consistency: which states that the observed outcome is equal to the potential outcome when the

observed treatment is the same as the assigned treatment value; (ii) conditional ignorability: which assumes

the existence of a set of observed pre-treatment covariates X such that treatment is conditionally independent

of the potential outcomes given X, i.e., Y a ⊥ A | X, for a ∈ {0, 1}; and (iii) positivity: which ensures that

the probability of receiving either treatment is greater than zero for each level of the covariates X. Under

assumptions (i)-(iii), ACE is identified via the adjustment formula EP

[
EP [Y | A = 1, X]−EP [Y | A = 0, X]

]
,

where P denotes the probability distribution of the observed data unit (X,A, Y ). The conditionally ignorable

model is illustrated via the DAG in Fig. 1(a) (without A← U → Y edges).

Various methods have been developed to infer the adjustment functional using the observed data.

These methods include propensity score matching [Rosenbaum and Rubin, 1983], g-computation [Robins,

1986], (stabilized) inverse probability of treatment weighting [Hernán and Robins, 2006], augmented inverse

probability of treatment weighting [Robins et al., 1994b], and targeted minimum loss based estimation [van

der Laan and Rubin, 2006]. In the presence of unmeasured confounders, denoted by U in Fig. 1(a), the ACE

is no longer identifiable in this model, and any inference based on the adjustment formula is likely to be

biased.

As an alternative to the conditionally ignorable model, Pearl proposed the front-door model [Pearl, 1995a],

which enables the identification of ACE even in the presence of unmeasured confounders U . The core idea

of this model is to identify a potentially multivariate set of mediators M that intersect all directed paths

from A to Y and share no unmeasured confounders with either the treatment or the outcome. The DAG

representation of the front-door model is shown in Fig. 1(b). These conditions correspond to the absence

https://github.com/annaguo-bios/fdtmle
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Fig. 1: (a) Example of a DAG with measured confounders X and unmeasured confounders U ; (b) The front-

door DAG with unmeasured confounders U between A and Y ; (c) The front-door DAG with the inclusion of

measured confounders X. The dashed edges in (b) highlight the underlying assumptions.

of dashed edges in Fig. 1(b), where UAM and UMY encode unmeasured confounding sources between the

treatment-mediator and mediator-outcome pairs, respectively. A generalized version of front-door model

allows for the existence of observed common causes X between treatment, mediator, and outcome, as shown

in Fig. 1(c). This generalized version is the main focus of this work.

The identification assumptions for ACE in the front-door model based on observations of O =

(X,A,M, Y ) ∼ P are as follows: (i) consistency which states Ma = M when A = a and Ym = Y when

M = m; (ii) conditional ignorability which assumes the absence of unmeasured confounders between the

treatment-mediator and mediator-outcome pairs, i.e., Ma ⊥ A | X and Ym ⊥M | A,X; (iii) no direct effect

which assumes that M intercepts all directed paths from A to Y , i.e., Y a,m = Ym for a ∈ {0, 1} and all m

in the support of M ; and (iv) positivity which ensures that p(A = 1 | X = x) and p(M = m | A = a,X = x)

are positive for all (x, a,m) in the support of (X,A,M). We denote byM our model for the observed data

distribution P , which is nonparametric up to the positivity conditions in (iv).

Given that identification arguments and estimation techniques for EP 1 [Y 1] and EP 0 [Y 0] are similar

regardless of the specific choice of treatment level, we explicitly consider EP a0 [Y a0 ], a0 ∈ {0, 1} to be

the parameter of interest. Under assumptions (i)-(iv), this parameter is identified via a functional of the

observed data distribution [Pearl, 1995b], ψa0
:M → Ψ P , where Ψ denotes the parameter space for ψa0

.

For simplicity, we hence suppress dependence of ψa0
on a0 and define the identifying functional as:

ψ(P )=

∫∫ 1∑
a=0

y p(y | m,a, x) p(a | x) p(m | A = a0, x) p(x) dy dmdx . (1)

The identification proof is provided in Appendix B.1.

The functional in (1) can also be interpreted as the so-called population intervention indirect effect (PIIE)

introduced by Fulcher et al. [2019]. The PIIE parameter, indexed by fixed treatment level a0, represents the

difference between the observed outcome mean and the potential outcome mean when the mediator variable

M behaves as if the treatment was set to a0, i.e., E[Y ]− E[Y (A,M(a0))]. The PIIE is also used for defining

the causal effect of an intervening variable to understand the role of chronic pain and opioid prescription

patterns in the opioid epidemic [Wen et al., 2023]. It was shown by Fulcher et al. [2019] that under a more

relaxed set of assumptions,1 PIIE is identified via identification of the term E[Y (A,M(a0))] using the exact

same functional in (1). Consequently, the nonparametric estimation procedures outlined in the subsequent

sections are naturally extendable to the estimation of the PIIE parameter. This indicates that our proposed

estimation methods have broader applicability beyond the specific context discussed in this paper.

Our primary objective is to develop estimators for the front-door functional, as defined in (1), using n i.i.d.

samples of the observed data O = (X,A,M, Y ). Our aim is to design estimators that are both statistically

desirable and easy to implement. We first briefly review the prior inference work and discuss their limitations

before outlining our proposals as remedies to the limitations.

1 The treatment is allowed to have a direct effect (i.e., not mediated through M) on the outcome.
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3. Plug-in and one-step estimation of the front-door functional

We note that the front-door functional ψ(P ) in (1) can be expressed as a functional of certain key nuisance

parameters, as opposed to a functional of the entire probability distribution P . In particular, the functional

depends on: (i) the outcome regression EP (Y |M,A,X), which we denote by µ(M,A,X), (ii) the propensity

score p(A = a | X), which we denote for a ∈ {0, 1} by π(a | X), (iii) the conditional mediator density

p(M | A = a0, X), which we denote by fM (M | a0, X), and (iv) the covariates density, which we denote by

pX . Together, we denote this collection of nuisance functional parameters by Q = (µ, fM , π, pX) and note

that ψ(P ) could be considered a functional of Q rather than the entire probability distribution P . Thus, with

a minor abuse of notation, we will also write ψ(Q). It is also useful for our discussions to introduce notation

for the following quantities:

ξ(M,X) :=
1∑

a=0

µ(M,a,X) π(a | X) , η(A,X) :=

∫
µ(m,A,X) fM (m | a0, X) dm ,

θ(X) :=

∫
ξ(m,X) fM (m | a0, X) dm .

Note that the parameters ξ, η, and θ are indexed by elements of Q. Thus, a particular choice of Q implies

values for each of these parameters as well.

A plug-in estimator of ψ(Q) could be constructed by first generating estimates µ̂ of the outcome regression

and π̂ of the propensity score. Next, the outcome regression is partially marginalized over the propensity

score distribution to yield an estimate ξ̂ such that ξ̂(m,x) =
∑1

a=0 µ̂(m,a, x)π̂(a | x). Then, ξ̂ is marginalized

over an estimate f̂M of the mediator density to generate an estimate θ̂. If M is discrete valued, then this

marginalization is straightforward, θ̂(x) =
∑

m ξ̂(m,x)f̂M (m | a0, x); if M is continuous valued then the

marginalization may involve numeric integration to compute θ̂(x) =
∫
ξ̂(m,x)f̂M (m | a0, x) dm. Finally, the

estimate θ̂ is marginalized over the empirical distribution of X, yielding the final estimate,

ψ(Q̂) =
1

n

n∑
i=1

θ̂(Xi) . (plug-in estimator) (2)

The stochastic behavior of such a plug-in estimator can be studied using a linear expansion of the

parameter. Given an integrable function f of the observed data O, let Pf :=
∫
f(o) p(o) do and

Pnf := 1
n

∑n
i=1 f(Oi). A linear expansion of ψ(Q̂) implies

ψ(Q̂) = ψ(Q)− PΦ(Q̂) +R2(Q̂,Q) , (3)

where Φ is a gradient of ψ and R2(Q̂,Q) is a so-called remainder term. In general, many gradients may exist

that satisfy equation (3); however, because M is nonparametric up to positivity conditions, there is only a

single gradient of ψ in the current context. This gradient is also referred to as the efficient influence function

(EIF) for ψ due to a fundamental connection between gradients and influence functions of regular estimators.

The EIF for ψ was provided by Fulcher et al. [2019] and can be written as a sum of four different components

(see Appendix B.3 for detailed derivations)

Φ(Q)(Oi) =
fM (Mi | a0, Xi)

fM (Mi | Ai, Xi)
{Yi − µ(Mi, Ai, Xi)}︸ ︷︷ ︸

ΦY (Q)(Oi)

+
I(Ai = a0)

π(a0 | Xi)
{ξ(Mi, Xi)− θ(Xi)}︸ ︷︷ ︸
ΦM(Q)(Oi)

+ {η(1, Xi)− η(0, Xi)} {Ai − π(1 | Xi)}︸ ︷︷ ︸
ΦA(Q)(Oi)

+ θ(Xi)− ψ(Q)︸ ︷︷ ︸
ΦX(Q)(Oi)

.

(4)

It is useful for our later developments to note that ifM is binary, we can rewrite ΦM (Q) as (see Appendix B.3

for details):

ΦM (Q)(Oi) =
I(Ai = a0)

π(a0 | Xi)
{ξ(1, Xi)− ξ(0, Xi)} {Mi − fM (1 | a0, Xi)} . (5)
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To better characterize the stochastic behavior of the plug-in estimator ψ(Q̂), we can rewrite (3) as

ψ(Q̂)− ψ(Q) = PnΦ(Q)− PnΦ(Q̂) + (Pn − P )
{
Φ(Q̂)− Φ(Q)

}
+R2(Q̂,Q) , (6)

where we have used the fact that PΦ(Q) = 0. The first term is a sample average of mean zero i.i.d. terms

and thus enjoys standard n1/2 asymptotic behavior. The third term is an empirical process term, which

can be shown to be oP (n−1/2) if Φ(Q̂) − Φ(Q) falls in a P -Donsker class with probability tending to 1

and P{Φ(Q̂) − Φ(Q)}2 = oP (1) [van der Vaart and Wellner, 2023]. In Section 5, we use sample-splitting

procedure to assure that the third term is oP (n−1/2), even if Donsker conditions are not met [Kennedy, 2022,

Chernozhukov et al., 2017]. The final term is the second-order remainder, which can generally be bounded by

the convergence rates of respective components of Q̂ to their true counterparts. Precisely explicating these

bounds on the second-order remainder requires consideration of the explicit form of this remainder, which

heretofore has not been provided in the literature. We provide the explicit characterization of the remainder in

Section 4 below. For the time being, it suffices to state that if the rates of convergence of nuisance estimators

are sufficiently fast, then we generally expect R2(Q̂,Q) = oP (n−1/2).

Thus, the final term to consider in (6) is the second term, which may contribute to the first-order bias

of the plug-in estimator. In particular, when flexible nuisance estimation strategies are used (e.g., based

on machine learning), this term will not have standard n1/2 asymptotic behavior. This fact motivates the

one-step corrected estimator, denoted by ψ+
1 (Q̂), to be ψ(Q̂) + PnΦ(Q̂), i.e.,

ψ+
1 (Q̂) =

1

n

n∑
i=1

f̂M (Mi | a0, Xi)

f̂M (Mi | Ai, Xi)
{Yi − µ̂(Mi, Ai, Xi)}+

I(Ai = a0)

π̂(a0 | Xi)

{
ξ̂(Mi, Xi)− θ̂(Xi)

}
+ η̂(Ai, Xi) ,

(7)

where η̂(a, x) =
∫
µ̂(m,a, x) f̂M (m | a0, x) dm, which may involve numeric integration if M is continuous

valued. This estimator corresponds to the estimator proposed by Fulcher et al. [2019]. There, the authors

suggested using parametric working models for the nuisance functionals µ, fM , and π, while employing the

empirical distribution for pX . Their work demonstrated that this approach yields a doubly robust estimator,

meaning it is consistent for ψ(Q) if either {µ̂, π̂} or f̂M are consistent for their respective target nuisance

parameters. Using parametric working models further ensures the Donsker class conditions [van der Vaart

and Wellner, 2023].

While the work of Fulcher et al. [2019] established key properties of doubly robust estimators of the

front-door functional, there are several opportunities for improving their approach. First, despite the double-

robustness property, the use of parametric models may be unappealing in many settings owing to concerns

pertaining to model misspecification. In such instances, it may be beneficial to incorporate more flexible

learning techniques into estimation of the nuisance parameters. This is particularly pertinent for estimation

of fM in instances with continuous and/or multivariate mediators, as the assumption of a fully parametric

model for a conditional density may represent a particularly strong modeling assumption, as compared to

a parametric modeling assumption for a conditional mean. While the one-step estimator can in theory be

combined with flexible modeling approaches, Fulcher et al. [2019] only establishes asymptotic normality of

their estimator assuming finite-dimensional working models for the nuisance parameters. In Section 4, we

provide the relevant extensions to allow more modern regression techniques.

Moreover, the one-step estimation framework suffers from the important practical drawback that it may

produce parameter estimates that fall outside the target parameter space, posing challenges for interpretation,

particularly when dealing with binary outcomes. Hence, an avenue for enhancement lies in developing an

estimation procedure that ensures the resulting estimate falls within the parameter space while preserving

the desired statistical properties. In Section 4 below we propose several doubly robust targeted minimum loss

based estimators (TMLEs) of the front-door functional that enjoy this property.

4. Targeted minimum loss based estimators of the front-door functional

Given a plug-in estimator ψ(Q̂) of the parameter of interest ψ(Q), the core idea of a TMLE procedure is to

find a replacement for Q̂, say Q̂⋆, such that the following two aims hold:
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(I) Q̂⋆ is at least as good of an estimate of Q as is Q̂, and

(II) PnΦ(Q̂⋆) = oP (n−1/2), so that the first order bias of ψ(Q̂⋆) would be negligible.

We first provide a high-level overview of TMLE. Consider the general setting where ψ(Q) is the parameter

of interest and Q is parameterized as (Q1, Q2, . . . , QJ ), i.e., there are J key nuisance parameters needed to

evaluate the parameter of interest and its efficient influence function. We assume Q belongs in a functional

space Q, defined asMQ1
×MQ2

× · · · ×MQJ
, i.e., the Cartesian product of the functional spaces of each

nuisance functional, denoted byMQj
. Suppose also that the EIF can be written as Φ =

∑J
j=1 Φj , where Φj

is the component of Φ that belongs to the tangent space associated with Qj . For example, for ψ(Q) in (1),

we can set Q = (µ, fM , π, pX), and according to the EIF in (4) Φ1 = ΦY ,Φ2 = ΦM ,Φ3 = ΦA,Φ4 = ΦX .

To achieve both aims (I)-(II), the TMLE procedure comprises two main steps: the initialization step,

where the initial estimate Q̂ is obtained, and the subsequent targeting step, where Q̂ is updated to a new

estimate Q̂⋆. In the initialization step, we obtain an initial estimate of Q based on a collection of estimates

for each nuisance parameter individually, Q̂ = (Q̂1, . . . , Q̂J ). In the targeting step, we require (i) a submodel

and (ii) a loss function for each component Qj of Q. For requirement (i), with an estimate Q̂ of Q, we

define a submodel {Q̂j(εj ; Q̂−j), εj ∈ R} withinMQj
. This submodel is indexed by a univariate real-valued

parameter εj and may also depend on Q̂−j (the components of Q̂ excluding component j) or a subset of

Q̂−j (including the possibility of an empty subset). For requirement (ii), with a given Q̃ ∈ Q, we denote a

loss function for Q̃j by L(Q̃j ; Q̃−j) : O → R. Note that the loss function for Q̃j can also be indexed using

Q̃−j , or possibly by a subset of Q̃−j , which may sometimes be an empty set. The submodel and loss function

must be chosen to satisfy three conditions:

(C1) Q̂j(0; Q̂−j) = Q̂j ,

(C2) Qj = argminQ̃j∈MQj

∫
L(Q̃j ;Q−j)(o) p(o) do ,

(C3) ∂
∂εj

L
(
Q̂j(εj ; Q̂−j); Q̂−j

) ∣∣∣
εj=0

= Φj(Q̂) .

(C1) implies that the submodel aligns with the given estimate Q̂j at εj = 0; (C2) indicates that the

expectation of the loss function under the true distribution P is minimized at Qj ; and (C3) ensures that

the evaluation of the derivative of the loss function with respect to εj at 0 is equivalent to evaluation of the

corresponding component of the EIF at Q̂.

Given appropriate choices of submodels and loss functions, we proceed to update Q̂ via an iterative

risk minimization process. Given current estimates at iteration t, say Q̂(t), we update Q̂
(t)
j via empirical

risk minimization along the selected submodel using the selected loss function. That is, we define ε̂j =

argminεj∈R PnL(Q̂j(εj ; Q̂
(t)
−j); Q̂

(t)
−j) to be the value of εj that minimizes empirical risk given current

estimates Q̂
(t)
−j . Condition (C2) suggests that the updated estimate Q̂

(t+1)
j = Q̂j(ε̂j ; Q̂

(t)
−j) should satisfy

(I), as Q̂
(t+1)
j will have lower empirical risk than Q̂

(t)
j . This process is repeated for each of the J components

of Q resulting in an updated estimate Q̂(t+1). Condition (C3) suggests that if during this updating process

we have found that ε̂j ≈ 0 for each j, then we might expect PnΦj(Q̂(t+1)) ≈ 0 for each j and thus (II) may

be satisfied. If after iteration t, we find that (II) is not approximately satisfied, we would repeat the updating

process. The process is repeated until PnΦ(Q̂(t)) < Cn, where Cn = oP (n−1/2), e.g., Cn = {n1/2log(n)}−1.

At this point, the final estimate of Q is denoted as Q̂⋆ and the TMLE is defined as the plug-in estimator

ψ(Q̂⋆).

We divide our TMLE estimators into two classes. The first class is a TMLE analogue of Fulcher et al.

[2019], where the estimator of the front door functional is built based on an estimate of the conditional density

of the mediator. This estimator is described in detail in Section 4.1. The second class of TMLE is based on

avoiding the mediator conditional density estimation via a reparameterization of the target parameter of

interest. This estimator is described in detail in Section 4.2. Our estimators are distinct in both steps of

the TMLE process relying on (i) different parameterizations of the nuisance parameters that constitute Q,

thereby requiring different approaches for estimating Q and (ii) requiring different strategies for achieving

(II), the desired approximate-equation-solving property of the TMLE where PnΦ(Q̂⋆) = oP (n−1/2). These
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details are included in the relevant subsections below. We refer readers to van der Laan et al. [2011] for a

more in-depth discussion on the TMLE methodology.

4.1. TMLE based on estimation of mediator density

Consider the plug-in estimator in (2), where we set Q = (µ, fM , π, pX). As a first step, we obtain initial

estimate Q̂ = (µ̂, f̂M , π̂, p̂X) of Q. Estimates of µ and π can be derived via any appropriate form of

regression, potentially including machine learning algorithms, and estimate of pX is often given by the

empirical distribution of X. Estimation strategies for fM will vary based on the specifics of the problem.

In this subsection, we focus on estimation strategies that rely on direct estimation of the mediator density.

Such estimators are likely only feasible in practice in settings where the mediator is low-dimensional and/or

discrete-valued. When M is discrete valued, an estimate of fM may be obtained simply via regression

approaches for discrete variables. When M is low-dimensional and continuous valued, we require some form

of conditional density estimation. Such density estimators could range in complexity from simple parametric

working models for fM through more flexible approaches including kernel density estimation or density

estimation based on the highly adaptive LASSO [Hayfield and Racine, 2008, Benkeser and Van Der Laan,

2016].

Given initial estimate Q̂ = (µ̂, f̂M , π̂, p̂X) of Q, we now describe the targeting step of the TMLE procedure.

We start the discussion focusing on binary M , and then extend the TMLE procedure to accommodate

continuous M . We assume Y is continuous for the TMLE procedures established in the rest of the paper,

and defer the corresponding procedures on binary Y to Appendix C.2.

Binary M . Let Q̂(t) = (µ̂(t), f̂
(t)
M , π̂(t), p̂X) denote the nuisance estimates at iteration t (Q̂(0) := Q̂). We

first note that, the initial estimate of pX , based on its empirical distribution, is found to be satisfactory as

it meets the condition PnΦX(Q̂⋆) = oP (n−1/2). This indicates that there is no need to update the nuisance

estimate p̂X during the TMLE targeting process. Therefore, our focus shifts to updating the other nuisance

estimates (µ̂(t), f̂
(t)
M , π̂(t)) to ensure that PnΦY (Q̂⋆), PnΦM (Q̂⋆), and PnΦA(Q̂⋆) are all oP (n−1/2), where

ΦA and ΦY are given in (4) and ΦM is rewritten in (5) for binaryM . For the iterative process, a convergence

threshold Cn is chosen such that it is also oP (n−1/2). While |PnΦ(Q̂(t))| > Cn, we perform the following

steps (1-4):

Step 1: Define loss functions and submodels. At each iteration, we define (i) parametric submodels for

π̂(t), f̂
(t)
M , and µ̂(t) using specific functional forms involving a univariate parameter ε, and (ii) loss functions,

which are used for empirical risk minimization. Recall that the choices of submodels and loss functions should

satisfy conditions (C1)-(C3).

For a given Q̂(t) ∈ Q, we define the following parametric submodels through π̂(t), f̂
(t)
M , and µ̂(t)

π̂
(
εA; µ̂(0), f̂

(t)
M

)
(1 | X) = expit

[
logit{π̂(t)(1 | X)}+ εA

{
η̂(t)(1, X)− η̂(t)(0, X)

}]
, εA ∈ R ,

f̂M
(
εM ; µ̂(0), π̂(t)

)
(1 | A,X) = expit

[
logit

{
f̂
(t)
M (1 | A,X)

}
+ εM

{
ξ̂(t)(1, X)− ξ̂(t)(0, X)

π̂(t)(A | X)

}]
, εM ∈ R ,

µ̂(εY )(M,A,X) = µ̂(t)(M,A,X) + εY , εY ∈ R ,

(8)

where

η̂(t)(a∗, X) =
1∑

m=0

µ̂(0)(m,a∗, X) f̂(t)
m (a0, X), for a∗ ∈ {0, 1} , and

ξ̂(t)(m∗, X) =
1∑

a=0

µ̂(0)(m∗, a,X) π̂(t)(a | X), for m∗ ∈ {0, 1} .

For a given π̃ ∈Mπ, f̃M ∈MfM
, and µ̃ ∈Mµ, we define the following loss functions

LA(π̃)(O) = − log π̃(A | X) ,
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LM (f̃M )(O) = −I(A = a0) log f̃M (M | A,X) , (9)

LY

(
µ̃; f̂

(t)
M

)
(O) =

f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ̃(M,A,X)}2 .

The proof establishing the validity of the combinations of parametric submodels and loss functions, with

respect to conditions (C1)-(C3), can be found in Appendix C.1.

Considering the linear nature of the submodel for µ̂(t) with respect to ε, it is realized that computations

of η̂(t)(1, X)− η̂(t)(0, X) and ξ̂(t)(1, X)− ξ̂(t)(0, X) are effectively based on the initial estimate µ̂. Therefore,

the dependence of submodels π̂
(
εA; µ̂(t), f̂

(t)
m

)
and f̂M

(
εM ; µ̂(t), π̂(t)

)
on µ̂(t) is solely through the initial

estimate µ̂(0). We underscore this via a revised notation π̂
(
εA; µ̂(0), f̂

(t)
m

)
and f̂M

(
εM ; µ̂(0), π̂(t)

)
. Also note

that the loss functions for π̃ and f̃M do not depend on µ̂(t). Therefore, as neither the submodels nor their

corresponding loss functions rely on updated estimate of µ̂, updates to π̂ and f̂M can be carried out first,

iteratively. Then the update to µ̂(0) can be completed in a single step, utilizing the final revision of f̂M (due

to the dependence of the loss function for µ̃ on f̂
(t)
M ).

Step 2: Perform iterative risk minimization using pre-defined submodels and loss functions for π and fM .

Step 2a: Update π by performing an empirical risk minimization to find

ε̂A = argmin
εA∈R

PnLA

(
π̂
(
εA; µ̂(0), f̂

(t)
M

))
. (10)

We can simplify this optimization problem via regression techniques using auxiliary variables. The solution

to the above empirical risk minimization is achieved by fitting the following logistic regression without an

intercept term:

A ∼ offset
(
logit π̂(t)(1 | X)

)
+ Ĥ

(t)
A

(
X
)
, where Ĥ

(t)
A (X) := η̂(t)(1, X)− η̂(t)(0, X) .

The covariate Ĥ
(t)
A (X) is an auxiliary variable and is often referred to as the “clever covariate.” The coefficient

in front of this clever covariate corresponds to the value of ε̂A as a solution to the optimization problem in

(10). We update π̂(t+1) = π(ε̂A; µ̂, f̂
(t)
M ) and define Q̂(temp) = (µ̂, π̂(t+1), f̂

(t)
M , p̂X). Condition (C3) implies

that PnΦA(Q̂(temp)) = oP (n−1/2).

Step 2b: Update fM by performing an empirical risk minimization to find

ε̂M = argmin
εM∈R

PnLM

(
f̂M
(
εM ; µ̂(0), π̂(t+1)

))
. (11)

The solution to the above empirical risk minimization is achieved by fitting the following logistic regression

without an intercept term:

M ∼ offset
(
logit f̂

(t)
M (1 | a0, X)

)
+ Ĥ

(t)
M

(
X
)
, where Ĥ

(t)
M

(
X
)
:=

ξ̂(t)(1, X)− ξ̂(t)(0, X)

π̂(t+1)(a0 | X)
.

The coefficient in front of the clever covariate Ĥ
(t)
M (X) corresponds to the value of ϵ̂M as a solution

to the optimization problem in (11). Finally, we update f̂
(t+1)
M = f̂M (ε̂M ; µ̂, π̂(t+1)) and let Q̂(t+1) =

(µ̂(0), π̂(t+1), f̂
(t+1)
M , p̂X). Condition (C3) implies that PnΦM (Q̂(t+1)) = oP (n−1/2). We now let t = t + 1

and iterate over Step 2 until the convergence criteria are satisfied.

We highlight the need for multiple iterations here. Note that even though PnΦM (Q̂(t+1)) = oP (n−1/2),

PnΦA(Q̂(t+1)) may not be oP (n−1/2). This is due to the fact that an update in f̂M impacts the auxiliary

variable ĤA. Therefore, the empirical risk minimization process in (10) must be re-performed to align with

the updated auxiliary variable Ĥ
(t+1)
A . On the other hand, an update in π̂ impacts the auxiliary variable ĤM ,
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and consequently the empirical risk minimization process in (11) must be re-performed. In summary, the

dependence of ĤA on the estimate of fM and ĤM on the estimate of π prompts the simultaneous updating

of auxiliary variables alongside nuisances, necessitating iterative execution of empirical risk minimization

processes.

Assume that convergence of Step 2 is achieved at iteration t⋆. The final estimates of π and fM are denoted

by π̂⋆ = π̂(t⋆) and f̂⋆
M = f̂

(t⋆)
M , respectively. Define Q̂(t⋆) = (µ̂(0), π̂⋆, f̂⋆

M , p̂X).

Step 3: Perform one-step risk minimization using pre-defined submodel and loss function for µ.

Update µ by performing an empirical risk minimization to find

ε̂Y = argmin
εY ∈R

PnLY

(
µ̂(εY ); f̂⋆

M

)
. (12)

This empirical risk minimization can be achieved by fitting the following weighted regression:

Y ∼ offset(µ̂(0)) + 1 , with weight =
f̂⋆
M (M | a0, X)

f̂⋆
M (M | A,X)

.

The coefficient of the intercept corresponds to the value of ε̂Y as a solution to the optimization problem in

(12). We update µ̂⋆ = µ̂(ε̂Y ; f̂⋆
M ) and Q̂⋆ = (µ̂⋆, π̂⋆, f̂⋆

M , p̂X). Condition (C3) implies that PnΦY (Q̂⋆) = 0.

Step 4: Evaluate the plug-in estimator in (2) based on updated estimate of Q, i.e., Q̂⋆, as follows:

ψ1(Q̂
⋆) =

1

n

n∑
i=1

θ̂⋆(Xi) , (first TMLE estimator) (13)

where θ̂⋆(x) =
∑

m∈{0,1} ξ̂
⋆(m,x)f̂⋆

M (m | a0, x) and ξ̂⋆(m,x) =
∑

a∈{0,1} µ̂
⋆(m,a, x)π̂⋆(a | x). The TMLE

procedure for computing ψ1(Q̂⋆) in the binary-mediator case is summarized in Algorithm 1, Appendix C.4.

Remark 1 An alternative method to simplify the TMLE process, particularly to bypass the iterative updating

of the nuisance estimates π̂ and f̂M , involves using the empirical distribution for the joint distribution

of A and X as P (Ai, Xi) = 1/n, for i = 1, . . . , n. This simplification ensures that the combined terms

PnΦA(Q̂⋆) + PnΦX(Q̂⋆) meet the condition of being oP (n−1/2). Consequently, this approach leads to a

modified version of the TMLE plug-in estimator, expressed as:

ψ1,mod(Q̂
⋆) =

1

n

n∑
i=1

[
1∑

m=0

µ̂⋆(m,Ai, Xi) f̂
⋆
M (m | a0, Xi)

]
. (modified first TMLE estimator) (14)

In this formulation, f̂⋆
M and µ̂⋆ are determined by solving the respective optimization problems in (11) and

(12) sequentially, while utilizing a flexible estimate of π(a | x) to compute the auxiliary variable ĤM . This

method, however, introduces a potential drawback related to the compatibility with π(A | X) during TMLE

implementation. Specifically, it involves using two different estimates for the distribution P (A | X): one

inferred from the empirical distribution P (Ai, Xi) = 1/n, and another derived from the regression of A on

X specified via π(A | X), used to compute the auxiliary variable ĤM . Despite this apparent incompatibility,

significant discrepancies in estimates are generally not observed. This is largely because the condition π̂⋆

satisfying PnΦA(Q̂⋆) = oP (n−1/2) is maintained in the TMLE procedure for ψ1(Q̂⋆), helping to mitigate

potential issues arising from the dual estimation of P (A | X).

Continuous M . In the scenario where the mediator M is continuous, the TMLE framework largely

mirrors that of the binary case, but it introduces additional complexities due to fM being a conditional

probability density function. In this case, we propose to use the following submodel,

f̂M (εM ; µ̂(0), π̂(t))(M | a0, X) = f̂
(t)
M (M | a0, X)

[
1 + εM

{
ξ̂(t)(M,X)− θ̂(t)(X)

π̂(t)(a0 | X)

}]
, (15)
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where

ξ̂(t)(M,X) =
1∑

a=0

µ̂(0)(M,a,X) π̂(t)(a | X) , and θ̂(t)(X) =

∫
ξ̂(t)(m,X) f̂

(t)
M (m | a0, X) dm .

Using this submodel, the empirical risk minimization problem in (11) can no longer be solved through simple

regression. Instead, a grid search or other numerical optimization methods can be used. When the TMLE

procedure converges, condition (C3) would imply PnΦM (Q̂⋆) = oP (n−1/2) where ΦM is given in (4). The

TMLE procedure for computing ψ1(Q̂⋆) in the continuous-mediator case is summarized in Algorithm 2,

Appendix C.4.

Remark 2 To ensure that the submodel in (15) is a valid submodel of MfM
, the range of εM must be

restricted. In Appendix C.3, we derive a value δ such that −δ < εM < δ. Alternatively, we may use the

following submodel where εM can span the entire real line,

f̂M (εM ; µ̂(0), π̂(t))(M | a0, X)=

f̂
(t)
M (M | a0, X) exp

[
εM

π̂(t)(a0 | X)

(
ξ̂(t)(M,X)− θ̂(t)(X)

)]
∫
f̂
(t)
M (m | a0, x) exp

[
εM

π̂(t)(a0 | x)

(
ξ̂(t)(m,x)− θ̂(t)(x)

)]
dm dx

, εM ∈ R.

This alternative formulation for the submodel ultimately involves more complex computation in the empirical

risk minimization process, due to the need to numerically approximate the denominator in each iteration of

the update process.

The submodel (15) can also be used in settings whereM is multivariate. However, in these cases, obtaining

a suitable estimate of fM (M | A,X) may pose significant theoretical and computational challenges, even

when assuming parametric working models. To address these challenges, we explore alternative approaches

that avoid the need for conditional density estimations.

4.2. TMLEs that avoid direct estimation of mediator density

An effective strategy to bypass mediator density estimation involves reinterpreting θ(X) as a quantity

that can be estimated via sequential regression. Note that θ(X) = E
[
ξ(M,X)

∣∣ A = a0, X
]
. This

representation suggests that an alternative plug-in estimator of the front door functional could be constructed

as follows. We first generate estimates µ̂ and π̂. Next, we define the pseudo-outcome variable ξ̂(Mi, Xi) =∑1
a=0 µ̂(Mi, a,Xi) π̂(a | Xi). Then, to obtain an estimate of θ, we perform a regression of the pseudo-

outcome on X using only data points where Ai = a0. To distinguish this estimation approach for θ from the

one used in the previous section, we use γ̂ to denote this estimate obtained via sequential regression. Finally,

the plug-in estimator can be computed by marginalizing γ̂ over the empirical distribution of X,

ψ2(Q̂) =
1

n

n∑
i=1

γ̂(Xi) . (second plug-in estimator) (16)

In constructing ψ2(Q̂), we have replaced the requirement for a conditional density estimate with the

requirement to estimate an additional regression γ̂. The latter is a much more tractable estimation problem

in settings where M is multivariate and/or continuous-valued. In these settings, avoiding complicated

multivariate conditional density estimation is appealing.

However, in order to implement a one-step estimator or TMLE based on this plug-in estimator formulation,

we cannot dispense with consideration of fM entirely, as it appears in ΦY (Q) as a component of the density

ratio,

fr
M (M,A,X) =

fM (M | A = a0, X)

fM (M | A,X)
.

Nevertheless, rather than estimating fM directly, we may instead consider approaches for estimation of the

density ratio fr
M . In multivariate settings, approaches for density ratio estimation may be more tractable
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than those available for estimation of a conditional density. Flexible estimators of density ratios are readily

available in the literature [Sugiyama et al., 2007, Kanamori et al., 2009, Yamada et al., 2013, Sugiyama et al.,

2010] and can be leveraged to this end. Alternatively, using Bayes’ Theorem, the density ratio fr
M (M,A,X)

can be reformulated as:

fr
M (M,A,X) =

λ(a0 | X,M)

λ(A | X,M)
×
π(A | X)

π(a0 | X)
, (17)

where λ(a | x,m) := p(A = a | X = x,M = m). This representation implies that the density ratio can

be estimated using binary regression methods to estimate λ and π. This regression-based method offers

an appealing alternative to both conditional density estimation and direct estimation of the density ratio.

In this approach, coping with multivariate mediators is as straightforward as including the mediators as

regressors in a mean regression problem. This approach therefore opens the door to leverage a host of

existing software approaches ranging from classical statistical models (e.g., logistic regression) to more modern

learning approaches.

Finally, in order to implement a one-step estimator or TMLE based on the plug-in formulation in (16), we

additionally require a means of estimating η. Whereas previously η̂ was computed by integrating an estimate µ̂

over the estimated mediator density f̂M , we now seek an approach that avoids the requirement for the density

estimate f̂M . For this goal, we can again leverage a sequential regression approach. It is straightforward to

show that η(A,X) = Aκ1(X) + (1 − A)κ0(X), κa(X) := E
[
µ(M,a,X)

∣∣ A = a0, X
]
, for a ∈ {0, 1}. This

equivalence suggests that we can avoid the estimation of fM when estimating η by instead estimating κa for

a = 0, 1. Estimation of κa involves constructing a pseudo-outcome variable µ̂(Mi, a,Xi), setting Ai = a for

all observations. This pseudo-outcome is then regressed on X using only data points where Ai = a0, yielding

estimate κ̂a. Repeating this process for both a = 0, 1 yields an estimate η̂(A,X) = Aκ̂1(X) + (1−A)κ̂0(X)

of η.

With an abuse of notation, let Q̂ = (µ̂, γ̂, f̂r
M , κ̂, π̂, p̂X) denote this alternative collection of estimated

nuisance parameters. Relative to the previous definition of Q̂, we have replaced f̂M with three additional

nuisance parameters that allow us to avoid estimation of conditional densities in calculation of our one-step

estimator and TMLE. A one-step estimator, denoted by ψ+
2 (Q̂), can then be computed as

ψ+
2 (Q̂) =

1

n

n∑
i=1

[
γ̂(Xi) + f̂r

M (Mi, Ai, Xi){Yi − µ̂(Mi, Ai, Xi)}

+
I(Ai = a0)

π̂(a0 | Xi)
{ξ̂(Mi, Xi)− γ̂(Xi)}+ {κ̂1(Xi)− κ̂0(Xi)}{Ai − π̂(1 | Xi)}

]
.

(18)

To differentiate between the two methods for estimating fr
M (M,A,X) in the one-step estimator ψ+

2 (Q̂), we

use specific notations. The estimator that directly estimates the density ratio fr
M (M,A,X) is labeled as

ψ+
2a(Q̂). On the other hand, the estimator that first uses regression of A on M,X (i.e., λ̂(A | M,X)) as an

intermediate step for estimating the density ratio fr
M (M,A,X) is referred to as ψ+

2b(Q̂).

Given an initial set of nuisance estimates Q̂, a TMLE version of ψ+
2 (Q̂) can be formulated as follows.

Step 1: Define loss function and submodels. For a given Q̂ ∈ Q, we define the following parametric submodels

through µ̂, π̂, and γ̂

µ̂(εY )(M,A,X) = µ̂(M,A,X) + εY , εY ∈ R ,

π̂(εA; κ̂)(1 | X) = expit
[
logit

{
π̂(1 | X)

}
+ εA

{
κ̂1(X)− κ̂0(X)

}]
, εA ∈ R ,

γ̂(εγ)(X) = γ̂(X) + εγ , εγ ∈ R .

(19)
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For a given µ̃ ∈Mµ, π̃ ∈Mπ and γ̃ ∈Mγ , we define the following loss functions

LY (µ̃; f̂r
M )(O) = f̂r

M (M,A,X){Y − µ̃(M,A,X)}2 ,

LA(π̃)(O) = − log π̃(A | X) ,

Lγ(γ̃; π̂, ξ̂)(O) =
I(A = a0)

π̂(a0 | X)

(
ξ̂(M,X)− γ̃(X)

)2
.

(20)

The proof establishing the validity of the combinations of parametric submodels and loss functions, with

respect to conditions (C1)-(C3), can be found in Appendix C.1.

Note that the submodel π̂(εA; κ̂) is indexed by κ̂, which in turn depends on µ̂. However, this submodel

remains invariant to an update of µ̂. This characteristic arises from the linear form of the submodel for µ

with respect to εY , which leads to the computation of κ̂1(X)− κ̂0(X) being effectively based on the initial

estimate µ̂. Furthermore, as neither the submodels nor their corresponding loss functions for π̂ (and µ̂) rely

on updated estimates of µ̂ (and π̂), the targeting step for π̂ and µ̂ can be executed simultaneously and in a

single step. On the other hand, the submodel and loss function for γ̂ are defined upon the updated estimates

π̂⋆ and µ̂⋆. This dependency indicates that the targeting process for γ̂ should be performed after completing

the updates for µ̂ and π̂. More specifically, ξ̂(M,X) and γ̂(X) in the submodel and loss function shall be

calculated based on the targeted estimates π̂⋆ and µ̂⋆. This sequential approach ensures that the targeting

of γ̂ aligns with the most recent estimates of π̂ and µ̂.

Step 2: Perform empirical risk minimizations using submodels and loss functions for µ and π.

Step 2a: Update µ by performing an empirical risk minimization to find ε̂Y = argminεY ∈R PnLY (µ̂(εY ); f̂r
M ).

This minimization problem can be solved by fitting the weighted regression Y ∼ offset(µ̂) + 1 with

weight f̂r
M (M,A,X). The coefficient of the intercept corresponds to the value of ε̂Y as a minimizer of

the empirical risk. Define µ̂⋆ = µ̂(ε̂Y ; f̂r
M ) and let Q̂(1) =

(
µ̂⋆, γ̂, f̂r

M , κ̂, π̂, p̂X ,
)
. Condition (C3) implies

that PnΦY (Q̂(1)) = 0.

Step 2b: Update π by performing an empirical risk minimization to find ε̂A = argminεA∈R PnLA(π̂(εA; κ̂)).

The solution to this empirical risk minimization is achieved by fitting the following logistic regression without

an intercept term:

A ∼ offset(logit π̂(1 | X)) + ĤA(X) , where ĤA(X) = κ̂1(X)− κ̂0(X) .

The coefficient in front of the clever covariate ĤA(X) corresponds to the value of ε̂A as a minimizer of the

empirical risk. Define π̂⋆ = π(ε̂A; µ̂) and let Q̂(2) =
(
µ̂⋆, γ̂, f̂r

M , κ̂, π̂⋆, p̂X
)
. Condition (C3) implies that

PnΦA(Q̂(2)) = 0. Compute γ̂(X) by fitting the following linear regression using only data points where

Ai = a0 and making prediction using all the data points of X.

ξ̂⋆(M,X) ∼ X , where ξ̂⋆(M,X) =
1∑

a=0

µ̂⋆(M,a,X) π̂⋆(a | X)

Step 3: Perform one-step risk minimization using pre-defined submodel and loss function for γ. Update γ

by performing an empirical risk minimization to find

ε̂γ = argmin
εγ∈R

PnLγ

(
γ̂(εγ); π̂

⋆, ξ̂⋆
)
, (21)

This empirical risk minimization can be achieved by fitting the following weighted linear regression:

ξ̂⋆ ∼ offset(γ̂) + 1 , with weight =
I(A = a0)

π̂⋆(a0 | X)
.
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The coefficient of the intercept corresponds to the value of ε̂γ as a solution to the optimization problem in

(21). Define γ̂⋆ = γ̂(ε̂γ) and let Q̂⋆ =
(
µ̂⋆, γ̂⋆, f̂r

M , κ̂, π̂⋆, p̂X ,
)
. Condition (C3) implies that PnΦ(Q̂⋆) = 0.

Step 4: Evaluate the plug-in estimator in (16) based on updated estimate γ̂⋆,

ψ2(Q̂
⋆) =

1

n

n∑
i=1

γ̂⋆(Xi) . (second TMLE estimator) (22)

The TMLE procedure for computing ψ2(Q̂⋆) in the multivariate-mediator case is summarized in Algorithm 3,

Appendix C.4.

To differentiate between the two approaches used to estimate fr
M (M,A,X) when implementing the TMLE

estimator ψ2(Q̂⋆), we use specific notations. We label the TMLE that uses the direct estimate of the density

ratio fr
M (M,A,X) as ψ2a(Q̂⋆). We label the TMLE estimator that uses regression of A on M,X (i.e.,

λ̂(A |M,X)) as an intermediate step to estimate the density ratio fr
M (M,A,X) as ψ2b(Q̂⋆).

Remark 3 In order to avoid the complex estimation of mediator density in a plug-in estimator for

ψ(Q) in (1), we can adopt an alternate sequential regression for θ(X). This involves redefining θ(X) as∑
a∈{0,1} η(a,X)π(a | X), where η(a,X) is aκ1(X) + (1− a)κ0(X). This approach changes the integration

sequence in (1) by integrating out M first to derive η(A,X), in contrast to the earlier focus on integrating

out A to obtain ξ(M,X). Consequently, this yields a distinct plug-in estimator, ψ3(Q̂), calculated as
1
n

∑n
i=1 κ̂1(Xi)π̂(1 | Xi) + κ̂0(Xi)π̂(0 | Xi). For the TMLE plug-in estimator of ψ3(Q̂), targeting κ̂ is

necessary, unlike in ψ2(Q̂⋆) where γ̂ was targeted. This also includes targeting µ̂ and π̂. The goal of the

targeting step for κ̂ would be to fulfill the condition that PnΦM (Q) = oP (n−1/2), where ΦM (Q)(Oi) is

rewritten as follows in terms of κa(X):

ΦM (Q)(Oi) =
I(Ai = a0)

π(a0 | Xi)

{
π(1 | Xi)

{
µ(Mi, 1, Xi)− κ1(Xi)

}
+ π(0 | Xi)

{
µ(Mi, 0, Xi)− κ0(Xi)

}}
.

For the TMLE plug-in estimator ψ3(Q̂⋆), an iterative process is needed to update the nuisance estimates

(µ̂, π̂, κ̂), which is a more complex procedure compared to the TMLE plug-in ψ2(Q̂⋆). Therefore, in practical

applications, we recommend using ψ2(Q̂⋆) for its simpler implementation.

5. Inference and asymptotic properties

For a TMLE ψ(Q̂⋆) of ψ(Q), (6) implies

ψ(Q̂⋆)− ψ(Q) = PnΦ(Q)− PnΦ(Q̂⋆) + (Pn − P )
{
Φ(Q̂⋆)− Φ(Q)

}
+R2(Q̂

⋆, Q) . (23)

In order to establish asymptotic linearity of the TMLE, we will require

(A1) Donsker estimates: Φ(Q̂⋆)− Φ(Q) falls in a P -Donsker class with probability tending to 1 ;

(A2) L2(P )-consistent influence function estimates: P{Φ(Q̂⋆)− Φ(Q)}2 = oP (1) ;

(A3) Successful targeting of nuisance parameters: PnΦ(Q̂⋆) = oP (n−1/2) .

(A1) and (A2) are sufficient to ensure that (Pn−P ){Φ(Q̂⋆)−Φ(Q)} = oP (n−1/2). Thus, (A1)-(A3) combined

with (23) imply that ψ(Q̂⋆) − ψ(Q) = PnΦ(Q) + R2(Q̂⋆, Q) + oP (n−1/2). Thus, for each of our proposed

estimators, it remains to establish an explicit form of R2. We do this for each estimator in separate Lemmas

below, which we then use to state a theorem establishing the asymptotic linearity of each proposed TMLE.

All proofs are deferred to Appendix D. Later in this section, we discuss a sample-splitting procedure to

relax condition (A1). We also note that only minor modifications of our theorems are required to establish

asymptotic linearity of the one-step analogues of TMLE. For brevity, we omit these results here.

In this section, we adopt the following integration notations interchangeably. For a P -measurable function

f , we will at times write integral notation in the following forms: Pf =
∫
f(o) dP (o) =

∫
f(o) p(o) do. We

will also use the notation ||f || = (Pf2)1/2 to denote the L2(P )-norm of the function f .
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5.1. Asymptotic behavior of ψ1(Q̂
⋆)

Consider ψ1(Q̂⋆) in (13), where Q̂⋆ = (µ̂⋆, f̂⋆
M , π̂⋆). The detailed form of the second-order remainder term

R2(Q̂⋆, Q) is provided in Lemma 1.

Lemma 1 (Remainder for ψ1(Q̂⋆)) The second-order remainder term of ψ1(Q̂⋆) is

R2(Q̂
⋆
, Q)

=

∫ [
1

f̂⋆
M (m | a, x)fM (m | a, x)

{
f̂

⋆
M (m | a0, x)fM (m | a, x) − fM (m | a0, x) f̂

⋆
M (m | a, x)

}{
µ(m, a, x) − µ̂

⋆
(m, a, x)

}

+
µ̂⋆(m, a, x)

π̂⋆(a0 | x) π(a | x) fM (m | a, x)

{
π(a0 | x) π̂⋆

(a | x) − π̂
⋆
(a0 | x) π(a | (x)

}{
fM (m | a0, x) − f̂

⋆
M (m | a0, x)

}]
dP (x, a,m) .

We have the following theorem establishing the asymptotic linearity of ψ1(Q̂⋆).

Theorem 1 (Asymptotic linearity of ψ1(Q̂⋆)) In addition to (A1)-(A3), we assume that the nuisance

estimates Q̂⋆ = (µ̂⋆, f̂⋆
M , π̂⋆) satisfy:

(A4.1) Bounded nuisance estimates: for all a,m, x, π̂⋆(a | x) > δ for some δ > 0, f̂⋆
M (m | a0, x)/f̂⋆

M (m |
a, x) < ∆ for some ∆ <∞;

(A5.1) L2(P ) convergence of nuisance regressions: Let ||π̂⋆ − π|| = oP (n− 1

k ), ||f̂⋆
M − fM || = oP (n− 1

b ),

||µ̂⋆ − µ|| = oP (n
− 1

q ), and assume that both 1
b
+ 1

q
≥ 1

2
and 1

k
+ 1

b
≥ 1

2
.

Under these conditions, ψ1(Q̂⋆) − ψ(Q) = PnΦ(Q) + oP (n−1/2) implying that the TMLE ψ1(Q̂⋆) is

asymptotically linear and with influence function equal to Φ(Q).

Conditions (A4.1) and (A5.1) are needed to ensure that the remainder provided in Lemma 1 is such that

R2(Q̂⋆, Q) = oP (n−1/2). Notably the cross-product structure of the remainder implies that it is possible

to estimate the relevant nuisance parameters at rates slower than n−1/2, thereby allowing for a potentially

wider application of flexible machine learning and statistical models than what is possible under the conditions

imposed by Fulcher et al. [2019].

An immediate corollary of Theorem 1 is that our TMLE enjoys the same multiple robustness properties

as the estimator described by Fulcher et al. [2019]. There, the authors describe their robustness in terms of

unions of parametric working models. Here, for the sake of parsimony and to contrast with the other TMLE

formulations below, we restate this multiple robustness result in terms of L2(P )-consistency of the nuisance

estimates.

Corollary 1 (Robustness of ψ1(Q̂⋆)) ψ1(Q̂⋆) is consistent for ψ(Q) if either (i) ||π̂⋆−π|| = oP (1) and ||µ̂⋆−
µ|| = oP (1), or (ii) ||f̂⋆

M − fM || = oP (1), or both (i) and (ii) hold.

5.2. Asymptotic behavior of ψ2a(Q̂
⋆)

Recall the TMLE estimator ψ2a(Q̂⋆) from Section 4.2 where a direct estimate of the mediator density ratio

f̂r
M is used as part of the TMLE procedure. For this TMLE, Q̂⋆ = (µ̂⋆, π̂⋆, γ̂⋆, κ̂, f̂r

M ). The detailed form of

the second-order remainder term R2(Q̂⋆, Q) for this parameterization is given in Lemma 2.

Lemma 2 (Remainder for ψ2a(Q̂⋆)) The second-order remainder term of ψ2a(Q̂⋆) is

R2(Q̂
⋆, Q) =

∫ (
f̂r
M (m,a, x)− fr

M (a, x)
)(
µ(m,a, x)− µ̂⋆(m,a, x)

)
dP (m,a, x)

+

∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)(
γ(x)− γ̂⋆(x)

)
dP (x)

+

∫ ((
κ̂1(x)− κ̂0(x)

)
−
(
κ1(x)− κ0(x)

))(
π(1 | x)− π̂⋆(1 | x)

)
dP (x) .
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We have the following theorem establishing the asymptotic linearity of ψ2a(Q̂⋆).

Theorem 2 (Asymptotic linearity of ψ2a(Q̂⋆)) In addition to (A1)-(A3), we assume the nuisance estimates

Q̂⋆ = (µ̂⋆, π̂⋆, γ̂⋆, κ̂, f̂r
M ) satisfy:

(A4.2) Bounded nuisance estimates: for all a, x, π̂⋆(a | x) > δ for some δ > 0 ;

(A5.2) L2(P )-rates of nuisance estimates: Let ||π̂⋆−π|| = oP (n− 1

k ), ||µ̂⋆−µ|| = oP (n
− 1

q ), ||γ̂⋆− γ|| =
oP (n

− 1

j ), ||κ̂a − κa|| = oP (n− 1

ℓ ), ||f̂r
M − fr

M || = oP (n− 1

c ), and assume that 1
c
+ 1

q
≥ 1

2
, 1

k
+ 1

j
≥ 1

2
,

and 1
ℓ
+ 1

k
≥ 1

2
.

Under these conditions, ψ2a(Q̂⋆) − ψ(Q) = PnΦ(Q) + oP (n−1/2) implying that the TMLE ψ2a(Q̂⋆) is

asymptotically linear and with influence function equal to Φ(Q).

As with Theorem 1, Theorem 2 affords nuisance estimators that converge to their true values at a slower

rate than n−1/2. Similar multiple robustness behavior as is observed for ψ1(Q̂⋆) in Corollary 1 extends to

ψ2a(Q̂⋆).

Corollary 2 (Robustness of ψ2a(Q̂⋆)) ψ2a(Q̂⋆) is consistent for ψ(Q) if at least one of the following

conditions hold:

(i) ||π̂⋆ − π|| = oP (1) and ||µ̂⋆ − µ|| = oP (1) ,

(ii) ||π̂⋆ − π|| = oP (1) and ||f̂r
M − fr

M || = oP (1) ,

(iii) ||µ̂⋆ − µ|| = oP (1) , ||γ̂⋆ − γ|| = oP (1) , and ||κ̂a − κa|| = oP (1) ,

(iv) ||γ̂⋆ − γ|| = oP (1) , ||κ̂a − κa|| = oP (1) , and ||f̂r
M − fr

M || = oP (1) .

Corollary 2 suggests that either the nuisance estimates µ̂⋆ and π̂⋆ need to converge to their respective

truths (conditions (i)-(iii)) or the estimates introduced to circumvent density estimation, γ̂⋆, κ̂a, f̂r
M , should

converge to their true values (condition (iv)). Additionally, if only one of µ̂⋆ or π̂⋆ is consistently estimated

(conditions (ii) and (iii)), then it is necessary for at least some of the components related to mediator density

to also be consistently estimated.

5.3. Asymptotic behavior of ψ2b(Q̂
⋆)

We now consider properties of ψ2b(Q̂⋆) from Section 4.2, where the mediator density ratio fr
M is estimated

by combining an estimate of π and an estimate of λ. For this TMLE, Q̂⋆ = (µ̂⋆, π̂⋆, γ̂⋆, κ̂, λ̂), and we have

the following Lemma establishing the remainder term.

Lemma 3 (Remainder for ψ2b(Q̂⋆)) The second-order remainder term of ψ2b(Q̂⋆) is

R2(Q̂
⋆, Q) =

∫
λ̂(a0 | m,x)
λ̂(a | m,x)

(
π̂⋆(a | x)
π̂⋆(a0 | x)

−
π(a | x)
π(a0 | x)

)(
µ(m,a, x)− µ̂⋆(m,a, x)

)
dP (m,a, x)

+

∫
π(a | x)
π(a0 | x)

(
λ̂(a0 | m,x)
λ̂(a | m,x)

−
λ(a0 | m,x)
λ(a | m,x)

)(
µ(m,a, x)− µ̂⋆(m,a, x)

)
dP (m,a, x)

+

∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)(
γ(x))− γ̂⋆(x)

)
dP (x)

+

∫ (
(κ̂1(x)− κ̂0(x))− (κ1(x)− κ0(x))

) (
π(1 | x)− π̂⋆(1 | x)

)
dP (x) .
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We have the following theorem establishing the asymptotic linearity of ψ2b(Q̂⋆).

Theorem 3 (Asymptotic linearity of ψ2b(Q̂⋆)) In addition to (A1)-(A3), we assume the nuisance estimates

Q̂⋆ = (µ̂⋆, π̂⋆, γ̂⋆, κ̂, λ̂) satisfy:

(A4.3) Bounded nuisance estimates: for all a,m, x, π̂⋆(a | x) > δ1 for some δ1 > 0 and λ̂(a | m,x) > δ2
for some δ2 > 0 ;

(A5.3) L2(P )-rates of nuisance estimates: Let ||π̂⋆ − π|| = oP (n− 1

k ), ||µ̂⋆ − µ|| = oP (n
− 1

q ), ||γ̂⋆ − γ|| =
oP (n

− 1

j ), ||κ̂a−κa|| = oP (n− 1

ℓ ), ||λ̂−λ|| = oP (n− 1

d ), and assume 1
q
+ 1

k
≥ 1

2
, 1

d
+ 1

q
≥ 1

2
, 1

k
+ 1

j
≥ 1

2
,

and 1
k
+ 1

ℓ
≥ 1

2
.

Under these conditions, ψ2b(Q̂⋆) − ψ(Q) = PnΦ(Q) + oP (n−1/2) implying that the TMLE ψ2b(Q̂⋆) is

asymptotically linear and with influence function equal to Φ(Q).

Similar to other two TMLEs discussed in previous subsections, ψ2b(Q̂⋆) enjoys slower nuisance convergence

rates than n−1/2, allowing for a broader range of flexible machine learning and statistical models.

In the TMLE procedure of ψ2b(Q̂⋆), a consistent estimate of the density ratio fr
M would require consistent

estimates of both π and λ. This requirement combines the robustness conditions (ii) and (iv) from Corollary 2

for ψ2a(Q̂⋆) into a single condition. We formalize the robustness properties for ψ2b(Q̂⋆) in the following

corollary.

Corollary 3 (Robustness of ψ2b(Q̂⋆)) ψ2b(Q̂⋆) is consistent for ψ(Q) if at least one of the following holds:

(i) ||π̂⋆ − π|| = oP (1) and ||µ̂⋆ − µ|| = oP (1) ,

(ii) ||π̂⋆ − π|| = oP (1) and ||λ̂− λ|| = oP (1) ,

(iii) ||µ̂⋆ − µ|| = oP (1) , ||γ̂⋆ − γ|| = oP (1) , and ||κ̂a − κa|| = oP (1) .

The above implies that if the rates of convergence (in L2(P )) for the nuisance components γ̂⋆, κ̂a, λ̂ are all

oP (1), then either π̂⋆ or µ̂⋆ must also have a L2(P )-rate of oP (1). This robustness behavior differs from the

robustness seen in ψ1(Q̂⋆) and ψ2a(Q̂⋆). In those cases, a consistent estimate of ψ(Q) could be solely based on

separate estimates of either fM (in ψ1(Q̂⋆)) or relevant components fr
M , γ, κa (in ψ2a(Q̂⋆)). Therefore, the

robustness of ψ2b(Q̂⋆) might be perceived as a “weaker robustness.” However, ψ2b(Q̂⋆) remains a favorable

choice because it uses all regression-based nuisance estimates, which can be effectively estimated using a

super learner.

5.4. Cross fitting as an alternative to Donsker conditions

It is possible to remove assumption (A1) for both the TMLE and one-step estimators via the use of cross

fitting, also referred to as cross-validated TMLE [Zheng and Van Der Laan, 2010] or double debiased machine

learning [Chernozhukov et al., 2017]. To implement cross-fitted estimators, the data are partitioned into K

non-overlapping subsets of approximately equal size. The split membership of each observation is represented

by Si, where Si ranges from 1 to K. Each subset k is in turn “held-out” from estimation of the nuisance

parameters comprising Q. That is, Q is estimated K times, with the k-th estimate Q̂(−k) generated using

observations for which Si ̸= k. Given this collection of estimated nuisance parameters, we may generate a

cross-fitted one-step estimator or TMLE of ψ(Q).

To generate a cross-fitted one-step estimator, we generate a one-step estimator using each of the K splits

of the data, where the k-th one-step estimator is computed based on Q̂(−k). For example, the k-th cross-fitted

analogue of ψ+
1 is

ψ+,cf
1,k (Q̂(−k)) =

1

nk

n∑
i:Si=k

f̂
(−k)
M (Mi | a0, Xi)

f̂
(−k)
M (Mi | Ai, Xi)

{
Yi − µ̂(−k)(Mi, Ai, Xi)

}



18 Guo et al.

+
I(Ai = a0)

π̂(−k)(a0 | Xi)

{
ξ̂(−k)(Mi, Xi)− θ̂(−k)(Xi)

}
+ η̂(−k)(Ai, Xi) , (24)

where ξ̂(−k), θ̂(−k), η̂(−k) are computed as before while only using the k-th estimate of Q̂(−k). The

final cross-fitted estimator is generated by averaging ψ+,cf
1,k (Q̂(−k)) over the K splits, i.e., ψ+,cf

1 (Q̂) =
1
K

∑K
k=1 ψ

+,cf
1,k (Q̂(−k)).

A cross-fitted TMLE can be implemented by defining a parametric submodels through each of the K

split-specific nuisance parameters. The submodels can be arranged so that they share a single parameter. For

example, consider the cross-fitted version of the TMLE ψ1(Q̂⋆) described in Section 4.1 above. In this case,

at iteration t, for k = 1, . . . ,K we could define a submodel through the current cross-fitted estimate π̂(t;−k)

as

π̂(−k)
(
εA; µ̂(−k;t), f̂

(−k;t)
M

)
(1 | X) = expit

[
logit{π̂(t;−k)(1 | X)}+ εA

{
η̂(−k;t)(1, X)− η̂(−k;t)(0, X)

}]
.

Notably, all K submodels share the same parameter εA. Thus, in the empirical risk minimization step of

TMLE, we compute

ε̂A = arg min
εA∈R

K∑
k=1

Pn,kLA

(
π̂(−k)

(
εA; µ̂(−k;0), f̂

(−k;t)
M

))
.

This risk minimization process results in updated estimates of all split-specific estimates of the propensity

score. Similar submodels could be defined for estimates of fM and µ and the procedure outlined in Section

4.1 can then be used to generate a cross-fitted TMLE.

The conditions for asymptotic linearity of such cross-fitted estimators is nearly identical to the Theorems

presented above, though notably the Donsker condition (A1) is no longer required. For brevity, we omit

formal theorems establishing asymptotic properties of the cross-fitted estimators.

6. Experiments

6.1. Simulations

We evaluated the performance of our proposed estimators for estimation of the causal effect. An estimate

of the causal effect was generated by estimating the average counterfactual outcome E(Y a0) for a0 ∈ {0, 1},
as described in Section 4 and taking a difference between the two estimates. With an abuse of notation, we

refer to these estimators of the causal effect as ψ1(Q̂⋆), ψ2a(Q̂⋆), and ψ2b(Q̂⋆). Additionally, we evaluated

the one-step counterpart of these TMLEs, denoted by ψ+
1 (Q̂), ψ+

2a(Q̂), and ψ+
2b(Q̂).

We considered four simulation studies, each with a specific aim. The first simulation is designed to

confirm the expected theoretical properties of our estimators across a variety of settings, including uni-

and multivariate mediators. The second simulation focuses on the potential finite-sample benefits of TMLE

as compared to one-step estimation in settings with weak overlap. The third simulation demonstrates

the potential benefits of flexible estimation of nuisance quantities, illustrating the comparatively poor

performance of the proposed estimators when built using nuisance parameter estimates based on misspecified

parametric models. The final simulation compares TMLE and one-step estimators to their cross-fitted

counterparts to demonstrate settings where cross-fitting is expected to be beneficial.

The implementation code is accessible through the Github repository: annaguo-bios/TMLE-Front-Door.

We have further developed the fdtmle package in R, designed for conducting causal inference using the

front-door criterion, available for download at Github repository: annaguo-bios/fdtmle.

Simulation 1: Confirming theoretical properties

Our first simulation investigated the asymptotic behavior of the estimators. In particular, we were interested

in confirming that when the conditions of our Theorems are satisfied the estimators: (i) have bias that

is o(n−1/2) and (ii) when scaled by n have variance that converges to the efficient variance P [Φ(Q)2].

We illustrate the above properties across mediators that are univariate binary, univariate continuous,

https://github.com/annaguo-bios/TMLE-Front-Door
https://github.com/annaguo-bios/fdtmle
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bivariate continuous, and four-dimensional continuous mediators. We also consider performance with nuisance

estimators that are based solely on parametric working models and maximum likelihood, or a mixture of

parametric working models and nonparametric kernel-based methods. We generated 1000 simulated data sets

at each sample size of 250, 500, 1000, 2000, 4000, and 8000. In all scenarios, our simulations demonstrated

our estimators had expected asymptotic behavior, and so we relegate a full presentation of these results to

Appendix E.1.

Simulation 2: TMLE vs. one-step in a setting with weak overlap

We compared the finite-sample characteristics of our proposed estimators in a setting with weak overlap. In

particular, we were interested in comparing the one-step estimators to TMLE, as TMLE has previously been

demonstrated to be more robust in settings with weak overlap.

In this simulation, we generated data as follows. A univariate covariate X was drawn from a uniform

distribution within the interval of [0, 1]. Given X = x, a binary treatment A was drawn from a Bernoulli(π(1 |
x)) distribution where π(1 | x) = 0.001 + 0.998x. Under this data generating process, the propensity scores

are approximately uniformly distributed on [0.001, 0.999], effectively creating a condition of weak overlap.

We then utilized this approach for generating weak treatment overlap for each of three scenarios defined

by the dimension and distribution of the mediator. We considered univariate binary, univariate continuous,

and bivariate continuous mediators. Details of the mediator and outcome distributions can be found in

Appendix E.2.

In each of the three mediator settings, we elected to study only the formulations of our estimators that

would appear most appealing in practice. For example, for the univariate binary mediator setting, we only

considered the ψ1 formulation of the TMLE and one-step estimators. This is because estimation of fM
in the setting of a binary mediator is straightforward. On the other hand, in a setting with a univariate

continuous mediator, all three formulations of the estimators may be considered in practice, as univariate

conditional density estimation for fM is still reasonably tractable. However, in the bivariate mediator setting,

we elected to focus on only the ψ2a and ψ2b formulations of our estimators, as there are fewer tools available

to practitioners for flexible estimation of a conditional bivariate density. Thus, it may be more appealing to

instead leverage the wide variety of regression-based estimation approaches that are available and could be

used with the ψ2a and ψ2b formulations of the estimators.

We generated 1000 data sets at each sample size of 500, 1000, and 2000. Nuisance parameters were

estimated as follows. Linear regressions and logistic regressions were employed to estimate E(Y |M,A,X) and

π(A | X), respectively. Logistic regression was utilized for estimating fM (M | A,X) under univariate binary

mediator. For estimators ψ1(Q̂⋆) and ψ+
1 (Q̂) in the case of a univariate continuous mediator, nonparametric

kernel density estimation was applied to estimate fM (M | A,X) using the np package in R. For estimators

ψ2a(Q̂⋆) and ψ+
2a(Q̂), mediator density ratio was estimated via the densratio package in R. For estimators

ψ2b(Q̂⋆) and ψ+
2b(Q̂), the mediator density ratio was estimated using the reformulation presented in (17),

where λ(A | X,M) was estimated through logistic regressions.

We compared the estimators based on bias, standard deviation (SD), mean squared error (MSE), coverage

of a 95% confidence interval (CI coverage), and average 95% confidence interval width (CI width). For a given

estimator ψ̂, a 95% confidence interval is computed as ψ̂ ± z0.975n−1/2σ̂ where z0.975 is the 0.975-quantile

of a standard normal distribution. For the one-step estimator, σ̂2 equals to the sample average of Φ(Q̂)2; for

TMLE, σ̂2 equals to the sample average of Φ(Q̂⋆)2.

The results are provided in Table 1. Across all settings, we found that TMLE and one-step estimators

had similar bias, but that TMLE generally had drastically improved SD leading to overall smaller MSE.

This increased stability is also reflected in the confidence interval width, which tended to be considerably

narrower for TMLE while offering comparable or more conservative coverage probability. These findings were

also consistent in both the smaller sample size (n = 500) and the largest (n = 2000).

Simulation 3: misspecified parametric models vs. flexible estimation

Our third simulation explored the behavior of TMLEs and one-step estimators in response to model

misspecification, with a focus on univariate binary and univariate continuous mediators. In these simulations,
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Table 1. Comparative analysis of TMLEs and one-step estimators under violation of the positivity assumption.

Univariate Binary Univariate Continuous Bivariate Continuous

ψ1(Q̂
⋆) ψ+

1 (Q̂) ψ1(Q̂
⋆) ψ+

1 (Q̂) ψ2a(Q̂
⋆) ψ+

2a(Q̂) ψ2b(Q̂
⋆) ψ+

2b
(Q̂) ψ2a(Q̂

⋆) ψ+
2a(Q̂) ψ2b(Q̂

⋆) ψ+
2b

(Q̂)

n=500

Bias -0.004 -0.010 -0.022 -0.004 -0.002 0.000 -0.002 -0.012 -0.012 0.153 -0.031 -0.065

SD 0.078 0.418 0.135 0.799 0.432 2.524 0.405 1.191 0.610 5.096 0.495 1.447

MSE 0.006 0.174 0.019 0.638 0.187 6.363 0.164 1.418 0.372 25.965 0.245 2.097

CI coverage 91.2% 95.4% 96.6% 95.2% 98.4% 97.1% 98.3% 97.3% 99.4% 98.2% 98.5% 97.7%

CI width 0.317 0.854 1.533 1.531 4.764 5.705 2.720 3.447 10.115 12.100 2.854 3.834

n=1000

Bias 0.000 -0.002 -0.012 -0.018 -0.004 0.041 -0.003 0.020 -0.015 -0.078 -0.003 -0.001

SD 0.056 0.207 0.101 0.470 0.342 1.394 0.338 0.787 0.389 1.841 0.333 0.716

MSE 0.003 0.043 0.010 0.221 0.117 1.942 0.114 0.619 0.152 3.391 0.111 0.513

CI coverage 92.1% 95.4% 96% 94.3% 98.5% 96.3% 98% 97.1% 99.4% 97.1% 99% 96.4%

CI width 0.240 0.492 0.931 0.930 3.071 3.460 1.861 2.178 4.809 5.365 1.852 2.136

n=2000

Bias 0.000 -0.002 -0.005 0.010 0.009 0.010 0.009 0.014 0.003 -0.006 0.008 0.022

SD 0.039 0.114 0.068 0.239 0.238 0.699 0.243 0.481 0.319 0.980 0.276 0.489

MSE 0.001 0.013 0.005 0.057 0.057 0.488 0.059 0.231 0.102 0.959 0.076 0.240

CI coverage 94.1% 96.2% 97.4% 96% 99.2% 96.9% 98.7% 96% 99.2% 96.9% 98.6% 97.4%

CI width 0.175 0.318 0.602 0.602 1.960 2.092 1.321 1.454 2.989 3.209 1.351 1.504

we considered univariate X and M , but introduced interactions between variables in the data generating

process (see Appendix E.3 for details). We again generated 1000 simulated data sets under sample sizes

of 500, 1000, and 2000 to study the performance of ψ1(Q̂⋆) and ψ+
1 (Q̂) for the binary mediator case, and

ψ2a(Q̂⋆), ψ2b(Q⋆
n), ψ

+
2a(Q̂), and ψ+

2b(Q̂) for the continuous mediator case.

The focus of this simulation is to quantify the impact of the estimation of Q into the ultimate estimation

of ψ(Q). Thus, comparisons of one-step vs. TMLE, for example, were not the focus of this study. Instead, we

wish to compare for a particular estimator the performance of the estimator under inconsistent estimation

of Q using a misspecified parametric working model versus estimation of Q using more flexible statistical

and machine learning approaches. In the former scenario, we utilized main terms linear regression models

to generate estimates of relevant nuisance parameters. These models notably did not include interaction

terms and were therefore misspecified. For more flexible estimation of Q, we relied on super learner [Van der

Laan et al., 2007]. Super learner is an ensemble method that uses cross-validation to construct an ensemble

of several candidate estimators. For our simulation, these candidate estimators included intercept-only

regression, generalized linear models, Bayesian generalized linear models, multivariate adaptive regression

splines, generalized additive models, random forests, support vector machine (SVM), Bayesian Additive

Regression Trees (BART), and extreme gradient boosting (XGBoost). Notably these candidate estimators

should be able to account for the interactions that were present in the data generating process. However, as

the candidate estimators contain complex machine learning algorithms, there may be concern as to whether

the Donsker condition required by our Theorems is satisfied. Thus, we also included cross-fitted versions of

each of our estimators.

We found that when misspecified working models were used for nuisance estimation, estimates of the causal

effect were biased and CI coverage probability was low at all sample sizes (Table 2). In contrast, the super

learner-based estimators were minimally biased in all settings. We found that confidence interval coverage

for the super learner-based estimators generally improved with sample size, though some undercoverage was

noted for the ψ1 formulation of the one-step and TMLE. These findings suggest that for complex DGPs,

incorporating a flexible nuisance estimation strategy, such as super learner, is advisable due to its ability to
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Table 2. Comparative analysis of TMLEs and one-step estimators under model misspecifications.

TMLEs One-step estimators

Univariate Binary Univariate Continuous Univariate Binary Univariate Continuous

ψ1(Q̂
⋆) ψ2a(Q̂

⋆) ψ2b(Q̂
⋆) ψ+

1 (Q̂) ψ+
2a(Q̂) ψ+

2b(Q̂)

Linear SL CF Linear SL CF Linear SL CF Linear SL CF Linear SL CF Linear SL CF

n=500

Bias -0.016 -0.001 -0.010 -0.081 -0.020 -0.037 -0.081 -0.016 -0.038 -0.017 -0.008 -0.005 -0.081 -0.021 -0.039 -0.081 -0.016 -0.037

SD 0.043 0.050 0.071 0.099 0.123 0.128 0.099 0.116 0.123 0.043 0.048 0.183 0.099 0.128 0.133 0.099 0.115 0.126

MSE 0.002 0.003 0.005 0.016 0.016 0.018 0.016 0.014 0.016 0.002 0.002 0.033 0.016 0.017 0.019 0.016 0.014 0.017

CI coverage 84.2% 83.2% 82.8% 85.5% 97% 96.8% 85.5% 91.5% 91.8% 83.1% 80% 81.5% 85.5% 96.8% 96.5% 85.5% 91.4% 91.4%

CI width 0.161 0.154 0.172 0.398 0.567 0.596 0.399 0.398 0.444 0.158 0.143 0.176 0.399 0.560 0.589 0.399 0.397 0.444

n=1000

Bias -0.018 -0.003 -0.008 -0.081 -0.012 -0.027 -0.081 -0.009 -0.023 -0.018 -0.006 -0.008 -0.081 -0.013 -0.029 -0.081 -0.009 -0.023

SD 0.030 0.035 0.035 0.074 0.088 0.089 0.074 0.088 0.089 0.030 0.034 0.035 0.074 0.092 0.092 0.074 0.087 0.089

MSE 0.001 0.001 0.001 0.012 0.008 0.009 0.012 0.008 0.008 0.001 0.001 0.001 0.012 0.009 0.009 0.012 0.008 0.008

CI coverage 81.5% 87.3% 85.3% 74.6% 98.2% 97.2% 74.6% 90.1% 89.9% 80.8% 83.6% 84.2% 74.6% 96.8% 96.6% 74.6% 90.3% 89.8%

CI width 0.111 0.113 0.117 0.282 0.403 0.416 0.282 0.293 0.311 0.109 0.106 0.110 0.282 0.400 0.412 0.282 0.292 0.310

n=2000

Bias -0.018 -0.002 -0.005 -0.084 -0.008 -0.019 -0.084 -0.005 -0.016 -0.018 -0.004 -0.005 -0.084 -0.008 -0.018 -0.084 -0.005 -0.016

SD 0.020 0.023 0.024 0.050 0.060 0.059 0.050 0.060 0.059 0.020 0.023 0.023 0.050 0.062 0.061 0.050 0.060 0.059

MSE 0.001 0.001 0.001 0.010 0.004 0.004 0.010 0.004 0.004 0.001 0.001 0.001 0.010 0.004 0.004 0.010 0.004 0.004

CI coverage 76.9% 89.7% 88.4% 60.5% 97.9% 98% 60.4% 92.2% 92.5% 75.4% 87.2% 87.4% 60.5% 97.3% 97.6% 60.4% 92.1% 92.3%

CI width 0.077 0.083 0.084 0.198 0.288 0.293 0.198 0.214 0.222 0.076 0.079 0.081 0.198 0.286 0.291 0.198 0.213 0.221

mitigate bias caused by model misspecification. In this simulation, we did not observe marked improvement

in estimation metrics when cross-fitting (CF) is used in conjunction with super learner.

Simulation 4: impact of cross-fitting

In our final simulation, we investigated the impact of cross-fitting more thoroughly by focusing on the use of

random forests, an algorithm that is notorious for poor performance in the absence of cross-fitting. For this

simulation, we generated ten measured confounders (X1, . . . , X10) independently from a uniform distribution

ranging from 0 to 1. Our data generating process also included complex interactions between the treatment

and measured confounders, and between the mediator and measured confounders, as well as non-linear terms

effects of measured confounders (details included in Appendix E.4). We again performed 1000 simulations

at sample sizes of 500, 1000, and 2000, and studied settings with both binary and continuous univariate

mediators.

We implemented random forests using a standard set of tuning parameters: 500 trees were grown to a

minimum node size of five observations for a continuous outcome and one observation for a binary variable.

We also repeated the simulation using a second set of tuning parameters, but found little difference in

substantive results (see Appendix E.4 for details).

We found that cross-fitted estimators produced uniformly superior results when compared to their non-

cross-fitted counterparts (Table 3). When estimating nuisances with no cross-fitting, estimators tended to

exhibit both larger bias and standard deviation when compared to their cross-fitted counterparts. Moreover,

the confidence interval coverage was poor and decreased with sample size. On the other hand, cross-fitting led

to substantial improvements in estimation, characterized by reduced bias and standard deviation, as well as

improved CI coverage. These findings indicate that in high-dimensional settings or scenarios where aggressive

modeling approaches are implemented, cross-fitting may prove beneficial in reducing bias and enhancing the

stability of results.

6.2. Real data application

Utilizing our front-door estimation framework, we investigated how early academic achievements influence

future annual income. The data for this analysis was sourced from the Life Course Study, which spans from

1971 to 2002 and are publicly available through the Finnish Social Science Data Archive [Jorma, 2018].

These data originate from a longitudinal study of 634 individuals born between 1964 and 1968 in Jyväskylä,
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Table 3. Comparative analysis for the impact of cross-fitting on TMLEs and one-step estimators in conjunction with the use of

random forests. RF refers to random forest with 500 trees and a minimum node size of 5 for a continuous variable and 1 for

binary, and CF denotes random forest with cross fitting using 5 folds.

TMLEs One-step estimators

Univariate Binary Univariate Continuous Univariate Binary Univariate Continuous

ψ1(Q̂
⋆) ψ2a(Q̂

⋆) ψ2b(Q̂
⋆) ψ+

1 (Q̂) ψ+
2a(Q̂) ψ+

2b(Q̂)

RF CF RF CF RF CF RF CF RF CF RF CF

n=500

Bias -0.162 -0.020 -0.312 0.055 -0.486 0.017 -0.103 -0.028 0.009 0.066 -0.492 0.014

SD 0.166 0.140 0.372 0.331 0.369 0.285 0.051 0.128 0.432 0.318 0.373 0.286

MSE 0.054 0.020 0.235 0.113 0.373 0.081 0.013 0.017 0.186 0.105 0.381 0.082

CI coverage 17.4% 82.8% 48.8% 86.9% 36.1% 87.3% 18.8% 86.3% 56.7% 87.6% 35.5% 87%

CI width 0.128 0.389 0.681 0.980 0.717 0.862 0.119 0.388 0.682 0.977 0.718 0.861

n=1000

Bias -0.162 -0.016 -0.329 0.054 -0.490 0.008 -0.100 -0.021 -0.017 0.059 -0.497 0.005

SD 0.114 0.096 0.252 0.212 0.267 0.221 0.040 0.091 0.286 0.215 0.271 0.221

MSE 0.039 0.009 0.172 0.048 0.312 0.049 0.012 0.009 0.082 0.049 0.320 0.049

CI coverage 13.3% 88.5% 30.1% 88.6% 19.5% 86.6% 12.4% 89.7% 52.4% 88.3% 18.3% 87.1%

CI width 0.101 0.315 0.417 0.690 0.520 0.656 0.098 0.315 0.420 0.689 0.520 0.655

n=2000

Bias -0.161 -0.010 -0.326 0.063 -0.473 0.019 -0.096 -0.013 -0.041 0.065 -0.479 0.016

SD 0.083 0.074 0.176 0.148 0.186 0.164 0.034 0.072 0.197 0.150 0.189 0.164

MSE 0.033 0.006 0.137 0.026 0.259 0.027 0.010 0.005 0.041 0.027 0.265 0.027

CI coverage 7.8% 90.4% 14.4% 89.8% 6.4% 86.5% 8.9% 90.7% 56.6% 88.9% 6.3% 86.5%

CI width 0.081 0.246 0.292 0.520 0.376 0.499 0.080 0.246 0.294 0.519 0.376 0.499

Finland. The study aimed to understand how abilities, social background, and educational achievements

shape an individual’s life path. The data collection occurred in four phases. The first phase in the 1970s

gathered initial information such as age, gender, family socioeconomic status, and results from the Illinois

Test of Psycholinguistic Abilities (ITPA), assessing verbal intelligence in Finnish children aged 3-9. The

second phase in the 1980s focused on academic achievements and performance. In 1991, the third phase

collected data on occupational progress and higher education choices of the participants. Finally, the 2002

phase, as the subjects neared middle age, involved collecting information on their income, educational levels,

and occupational status.

We were interested in estimating the causal effect of early academic performance (A) on an individual’s

annual income (Y ). We used a binary measure of academic performance based on whether an individual’s

sixth-grade all-subject grade averages were above or below the median for the population. Our hypothesis

is that early academic performance influences annual income by shaping educational and career paths,

quantifiable through eight mediators (M1 − M8), detailed in Table 4. We also controlled for family

socio-economic status, intelligence (measured by ITPA score), age, and gender (X1 −X4).

Given the dimension of the mediators and due to the fact that the mediators include binary, categorical,

and continuous-valued variables, we elected to use our proposed estimators that avoid mediator density

estimation. Due to the potential for interactions and non-linear relationships, we wished to estimate nuisance

parameters flexibly, and thus adopted a super learner approach combined with 5 folds cross-fitting. The

candidate estimators included in the super learner include intercept-only regression, generalized linear models,

multivariate adaptive regression splines, random forests, and XGBoost. For simplicity, we managed missing

data in the variables mentioned by employing single imputation.
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Table 4. Variable descriptions used in real data analysis (from the Finnish Social Science Data Archive.) Summary statistics

contain information about mean and standard deviation for continuous variables and category frequency for categorical variables.

Variable Definition; Summary statistic Year

X1 Socio-economic status as the total family taxable income in years 1983-84; 21619.54 (9806.7) 1983-84

X2 ITPA score; 35.87 (5.97) 1971-72

X3 Gender; male (49.68%), female (50.32%) 1971-91

X4 Age; 25.17 (1.2) 1991

A 6th-grade all-subject grade averages compared to median; above (44.95%), below (55.05%) 1984

M1 Undergraduate degree; yes (24.13%), no (75.87%) 1991

M2 Highest educational field (categorised in accordance with Statistics Finland’s Classification

of Education 1988); science (90.06%), art (9.94%)

1991

M3 Age at the start of the highest attained educational qualification; 19.33 (2.53) 1991

M4 Length of formal education in months after comprehensive/upper secondary school (including

education in progress; 28.55 (14.62)

1991

M5 Number of different fields of education (including education in progress); 1.14 (0.5) 1991

M6 Educational qualification required for current job; no (22.56%), somewhat (19.87%), yes

(57.57%)

1991

M7 Total length of the spells of unemployment greater than one year; no (84.07%), yes (15.93%) 1991

M8 Age when started working; 21.34(2.4) 1991

Y Respondent’s earned income in euros in year 2000; 20541.93 (14462.12) 2002

Our analysis, employing the TMLE estimator ψ2b(Q̂⋆), reveals that individuals with superior academic

performance in early stages are likely to earn a higher future annual income. Specifically, there is an average

increase of €2953.33 ( 95% CI: €1158.63, €4748.03) in comparison to their counterparts with lower academic

achievement. Similarly, the one-step estimator ψ+
2b(Q̂

⋆) corroborates these findings, projecting an income

rise of €3232.34 (95% CI: €1226.61, €5238.07) for those with better academic performance during early

education. These aligned results underscore the influence of strong academic foundations in shaping future

income prospects, likely mediated by the attainment of higher education and the pursuit of more advantageous

career trajectories.

7. Discussions

In this work, we have extended the targeted minimum loss based estimation (TMLE) approach to the front-

door criterion for estimating the average causal effect (ACE) in the presence of unmeasured confounding

between treatment and outcome. We have proposed a range of estimators that are capable of handling binary,

continuous, and multivariate mediators, addressing a significant gap in current methodologies. By introducing

novel estimators for scenarios involving multivariate mediators, we have provided a more nuanced approach

to understanding complex mediator relationships. The flexibility of our proposed estimators to incorporate

machine learning algorithms marks an important advancement over traditional parametric working models.

This adaptability makes our methods suitable for complex real-world situations where simpler models may

fall short. Moreover, the establishment of formal conditions for nuisance functional estimations underpins

the reliability and validity of our estimators, ensuring their asymptotic validity. Our framework further

makes use of sample-splitting in relaxing the Donsker condition assumptions, which we demonstrated

is particularly important when incorporating more aggressive machine learning approaches. This robust

theoretical foundation is crucial for causal inference, particularly in observational studies.

Despite the advancements, our research has certain limitations that open avenues for future exploration. A

key area for future work is the conduction of sensitivity analyses to evaluate the robustness of the front-door

untestable model’s assumptions. In prior work [Bhattacharya and Nabi, 2022], use of an auxiliary variable

has been proposed to test the encoded assumptions based on generalized equality constraints, a.k.a. Verma

constraints [Verma and Pearl, 1990]. Such results would offer deeper insights into the model’s limitations

and applicability in various scenarios. Additionally, extending the estimation ideas to identified effects in

more broader class of models, such as DAGs with hidden variables (which are often summarized via acyclic
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directed mixed graphs, or ADMGs for short), would broaden the applicability of our approach to a wider

range of causal inference problems. Nonparametric identification theory for causal effects in causal models

associated with ADMGs is well studied. However, flexible estimation of such effects remains an active area

of research [Bhattacharya et al., 2022]. Furthermore, applying our TMLE-based estimators to different real-

world datasets and contexts would further validate their utility and adaptability, showcasing their practical

implications.
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Appendix

The appendix is structured as follows. Appendix A offers a summary of the notations used throughout

the manuscript to aid in understanding and reference. Appendix B details the identification process of

the front-door model and explains the derivation of its efficient influence function. It also includes a brief

overview of the geometric views of the front-door statistical model, particularly in terms of tangent spaces.

Appendix C delves into specific aspects of the TMLE procedures not covered in the main text. This includes

verifying the validity of the loss function and submodel combinations based on criteria (C1)-(C3), adjustments

made for binary outcomes in the TMLE process, and a summarized, algorithmic presentation of the TMLE

procedures. Appendix D presents the proofs for all the results mentioned in the manuscript. Appendix E

includes additional simulation results to complement the study.

Throughout the supplementary material, we adopt the following integration notations interchangeably:∫
(.)dP (x) =

∫
(.)p(x) dx,

∫
(.)dP (x, y) =

∫∫
(.)p(x, y) dx dy, for any random variables X and Y .

A. Glossary of terms and notations

For ease of navigation through notations used in the manuscript, we provide a comprehensive list in Table 5.

Table 5. Glossary of terms and notations

Symbol Definition Symbol Definition

A, a0 Treatment, fixed assignment π(A | X) propensity score

Y, Y a Outcome, potential outcome µ(M,A,X) Outcome regression

X Observed confounders fM (M | A,X) Mediator density

M Mediator(s) ξ(M,X)
∑

a∈{0,1} µ(M,a,X)π(a | X)

U Unmeasured variables η(A,X)
∫
µ(m,A,X)fM (m | a0, X) dm

O Observed data (X,A,M, Y ) θ(X)
∫
ξ(m,X)fM (m | a0, X)dm

P Observed data distribution γ(X) E
[
ξ(M,X)

∣∣ a0, X] ≡ θ(X)

Q Collection of nuisances fr
M (M,A,X) fM (M | a0, X)/fM (M | A,X)

ψ(P ) Target parameter (≡ ψ(Q)) λ(A | M,X) p(A | M,X)

Φ(Q) Efficient influence function (EIF) κa(X) E
[
µ(M,a,X)

∣∣ a0, X]
Q̂ Initial estimate of Q τ(A,X) E

[
fr
M (M,A,X) µ(M,A,X)

∣∣ A,X]
Q̂⋆ TMLE estimate of Q HA(X) Clever covariate in treatment model

pX Covariates distribution HM (X) Clever covariate in mediator model

Pn Empirical distribution M,X Domains for variables M,X

LQj
Loss function for nuisance Qj ∈ Q MQj

,Q Model space for nuisance Qj and Q

B. Details on the front-door model

B.1. Nonparametric identification

Given the stated identification assumptions, p(Y a0 = y) can be identified as follows:

p(Y a0 = y) =

∫∫
p(Y a0 = y,Ma0 = m,X = x) dm dx

=

∫∫
p(Ym = y |Ma0 = m,x) p(Ma0 = m | x) p(x) dm dx

=

∫∫ { 1∑
a=0

p(Ym = y,A = a |Ma0 , x)
}
p(M = m | A = a0, x) p(x) dm dx

=

∫∫ { 1∑
a=0

p(Ym = y | A = a, x) p(A = a | x)
}
p(M = m | A = a0, x) p(x) dm dx
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=

∫∫ { 1∑
a=0

p(Y = y |M = m,A = a, x) p(A = a | x)
}
p(M = m | A = a0, x) p(x) dm dx ,

where the first equality holds by probability rules, second by factorization rules, and a combination of

consistency and no direct effect assumptions, the third holds by probability rules and consistency, the fourth

holds by factorization rules, consistency, and conditional ignorability, and the fifth holds by conditional

ignorability and consistency. Thus, our target parameter E[Y a0 ] is identified via the following functional:

ψ(P ) =

∫∫ 1∑
a=0

y p(y | m,a, x)p(a | x) p(m | a0, x) p(x) dy dm dx .

B.2. Statistical model

Let H denote the Hilbert space defined as the space of all mean-zero, square-integrable scalar functions of

observed data O = (X,A,M, Y ), equipped with the inner product E[h1(O) × h2(O)], ∀h1, h2 ∈ H. Let M
denote the front-door statistical model, which consists of distributions defined over observed data O. By

chain rule of probability, we can write down this joint distribution as P (o) = P (y | m,a, x) P (m | a, x) P (a |
x) P (x). Given this factorization, we can write down the joint score as S(o) = S(y | m,a, x) + S(m |
a, x) + S(a | x) + S(x).

The tangent space ofM, denoted as T , is defined as the mean-square closure of all linear combinations of

scores in corresponding parametric submodels forM. We can partition T into a direct sum of four orthogonal

subspaces, T = TY ⊕ TM ⊕ TA ⊕ TX , defined as follows:

TY =
{
hY (Y,M,A,X) ∈ H s.t. E

[
hY (Y,M,A,X)

∣∣ M,A,X
]
= 0

}
,

TM =
{
hM (M,A,X) ∈ H s.t. E

[
hM (M,A,X)

∣∣ A,X] = 0
}
,

TA =
{
hA(A,X) ∈ H s.t. E

[
hA(A,X)

∣∣ X] = 0
}
,

TX =
{
hX(X) ∈ H s.t. E[hX(X)] = 0

}
.

Demonstrating the mutual orthogonality of these tangent spaces is straightforward. For instance, consider

any hY (Y,M,A,X) ∈ TY and hM (M,A,X) ∈ TM . The inner product of these elements is zero, expressed as:

E [hY (Y,M,A,X)× hM (M,A,X)] = E [hM (M,A,X)× E [hY (Y,M,A,X) |M,A,X]] = 0, which confirms

the orthogonality of TY and TM . Similar arguments can be applied to prove orthogonality between other

pairs of tangent spaces. In the context of the front-door model, where there is no independence restriction

among any sets of variables, the tangent space encompasses the entire Hilbert space. Broadly speaking, any

statistical model in which T is equivalent to H is classified as nonparametric saturated.

Any function h(O) within the Hilbert space H can be uniquely decomposed into orthogonal components,

expressed as h = hY +hM +hA +hX . Here, hV represents the projection of h onto TV for each V in the set

{Y,M,A,X}. A prime example of this decomposition is observed in the nonparametric EIF Φ(O) ∈ H. The

EIF can be broken down into four distinct parts, each corresponding to the unique projection of Φ(O) onto

one of the four mutually orthogonal tangent spaces. The projection ΦY (O) is specifically shown as a unique

projection of Φ(O) onto TY . Similar proofs for ΦM (O), ΦA(O), and ΦX(O) as projections onto TM , TA, and

TX , respectively, can be readily formulated. Demonstrating that ΦY (O) is a projection of Φ(O) onto TY is

equivalent to showing that for any hY (Y,M,A,X) ∈ TY , the equation E
[
(Φ(O)−ΦY (O))hY (Y,M,A,X)

]
=

0 holds true. Note that Φ(O)−ΦY (O) is only a function ofM,A,X. Thus, via tower rule, we have: E
[
(Φ(O)−

ΦY (O))hY (Y,M,A,X)] = E
[
(Φ(O)− ΦY (O))E

[
hY (Y,M,A,X)

∣∣ M,A,X
]]

= 0.

B.3. Nonparametric efficient influence function

In the following, we let o = (x, a,m, y) denotes values of the observed vector of variables O = (X,A,M, Y ).

∂

∂ε
ψ (Pε)

∣∣∣
ε=0

=
∂

∂ε

∫
y dPε (y | m,a, x) dPε(m | a0, x)dPε (a | x) dPε(x)

∣∣∣
ε=0
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=

∫
yS (y | m,a, x) dP (y | m,a, x) dP (m | a0, x)dP (a | x) dP (x) (1)

+

∫
yS(m | a0, x)dP (y | m,a, x) dP (m | a0, x)dP (a | x) dP (x) (2)

+

∫
yS (a, x) dP (y | m,a, x) dP (m | a0, x)dP (a | x) dP (x). (3)

With the shorthand notation of the nuisances, Line (1) simplifies to:∫
yS (y | m,a, x) dP (y | m,a, x) dP (m | a0, x)dP (a | x) dP (x)

=

∫
fr
M (m,a, x) [y − µ(m,a, x)]S (y | m,a, x) dP (y,m, a, x)

=

∫
fr
M (m,a, x) [y − µ(m,a, x)]S (o) dP (o).

Line (2) simplifies to: ∫
yS(m | a0, x)dP (y | m,a, x) dP (m | a0, x)dP (a | x) dP (x)

=

∫ ∑
a

µ(m,a, x)π(a | x)S(m | a0, x)dP (m | x, a0)dP (x)

=

∫ I (a = a0)

π(a | x)
ξ(m,x)S(m | a0, x)dP (o)

=

∫ I (a = a0)

π(a | x)

[
ξ(m,x)− θ(x)

]
S(m | a, x)dP (o)

=

∫ I (a = a0)

π(a | x)
[ξ(m,x)− θ(x)]S(o)dP (o).

Line (3) simplifies to: ∫
yS (a, x) dP (y | m,a, x) dP (m | a0, x)dP (a, x)

=

∫
(η(a, x)− ψ)S (a, x) dP (a, x)

=

∫
(η(a, x)− ψ)S(o)dP (o).

Therefore, the EIF for ψ(Q), denoted by Φ(Q)(O), is:

Φ(Q)(O) =
fM (M | a0, X)

fM (M | A,X)
{Y − µ(M,A,X)}︸ ︷︷ ︸

ΦY (Q)(O)

+
I(A = a0)

π(a0 | X)
{ξ(M,X)− θ(X)}︸ ︷︷ ︸

ΦM(Q)(O)

+ η(A,X)− θ(X)︸ ︷︷ ︸
ΦA(Q)(O)

+ θ(X)− ψ(Q)︸ ︷︷ ︸
ΦX(Q)(O)

.

When A is binary, ΦA(Q) can be simplified as:

η(A,X)− θ(X) =
1∑

a=0

[I(A = a) η(a,X)− η(a,X) π(a | X)]

=
1∑

a′=0

η(a,X){I(A = a)− π(a | X)}
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= {η(1, X)− η(0, X)}{A− π(1 | X)}.

Similarly, when M is binary, ΦM (Q) can be simplified as:

I(A = a0)

π(a0 | X)
{ξ(M,X)− θ(X)} =

I(A = a0)

π(a0 | X)

1∑
m=0

{I(M = m)ξ(m,X)− ξ(m,X) fM (m | a0, X)}

=
I(A = a0)

π(a0 | X)

1∑
m=0

ξ(m,X) {I(M = m)− fM (m | a0, X)}

=
I(A = a0)

π(a0 | X)
{ξ(1, X)− ξ(0, X)}{M − fM (1 | a0, X)}.

C. Details of the TMLE procedures

C.1. Valid loss function and submodel combinations

We prove the validity of the loss function and submodel combinations under binary mediator, showcased

in Algorithm 1, Appendix C.4, with detailed discussions in Section 4.1. Similar proofs for other proposed

TMLEs can be readily formulated.

The proof of loss function and submodel combination used for updating fM (M | A,X) satisfying conditions

(C1)-(C3) imitates the proof for the propensity score. Thus, we only focus on proofs for π and µ here.

Loss function and submodel combination used for updating π(A | X):

π̂
(
εA; µ̂(t), f̂(t)

m

)
(1 | X) = expit

[
logit{π̂(t)(1 | X)}+ εA

{
η̂(t)(1, X)− η̂(t)(0, X)

}]
, εA ∈ R ,

LA(π̃)(O) = − log π̃(A | X) .

Proof of (C1):

π̂
(
εA = 0; µ̂(t), f̂

(t)
m

)
(1 | X) = expit

[
logit{π̂(t)(1 | X)}

]
= π̂(t)(1 | X)

Proof of (C2):

E[LA(π̃)(O)] = E[− log π̃(A | X)]

=

∫ {
−
∑
a

π(a | x) log π̃(a | x)

}
dP (x) .

The above is minimized if −
∑

a π(a | x) log π̃(a | x) is minimized for any x ∈ X . According to the following

relation

−
∑
a

π(a | x) log π̃(a | x) = −
∑
a

π(a | x) log
(
π̃(a | x)
π(a | x)

× π(a | x)
)

= −
∑
a

π(a | x) log
π̃(a | x)
π(a | x)

−
∑
a

π(a | x) log π(a | x) ,

we only need to focus on the minimization of −
∑

a π(a | x) log
π̃(a|x)

π(a|x)
, which corresponds to the Kullback-

Leibler (KL) divergence from π(a | x) to π̃(a | x), denoted by DKL(π || π̃). This KL-divergence is minimized

if π̃(A | X = x) = π(A | X = x), for all x ∈ X .

Proof of (C3):

∂

∂εA
LA(π̂(εA; µ̂

(t)
, f̂

(t)
m ))

∣∣∣∣∣
εA=0

= −
∂

∂εA

[
A log π̂(εA; µ̂

(t)
, f̂

(t)
m ) + (1 − A) log

{
1 − π̂(εA; µ̂

(t)
, f̂

(t)
m )
}] ∣∣∣∣∣

εA=0
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= −

A ∂
∂εA

π̂(εA; µ̂(t), f̂(t)
m )

π̂(εA; µ̂(t), f̂
(t)
m )

+ (1 − A)
− ∂

∂ε π̂(εA; µ̂(t), f̂(t)
m )

1 − π̂(εA; µ̂(t), f̂
(t)
m )

 ∣∣∣∣∣
εA=0

=
{
η̂
(t)

(1, X) − η̂
(t)

(0, X)
}{

π̂
(t)

(1 | X) − A
}

∝ ΦA(Q̂
(t)

)

Loss function and submodel combination used for updating µ(M,A,X):

µ̂(εY )(M,A,X) = µ̂(t)(M,A,X) + εY , εY ∈ R ,

LY

(
µ̃; f̂

(t)
M

)
(O) =

f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ̃(M,A,X)}2 .

Proof of (C1):

µ̂(εY = 0)(M,A,X) = µ̂(t)(M,A,X).

Proof of (C2):

E[LY (µ̃; f̂
(t)
M )(O)] = E

[
f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ̃(M,A,X)}2
]

= E
[
f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ(M,A,X)}2
]
+ E

[
f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{µ(M,A,X)− µ̃(M,A,X)}2
]
,

which is minimized when µ̃(M,A,X) = µ(M,A,X).

Proof of (C3):

∂

∂ε
LY (µ̂(ε; f̂

(t)
M ))

∣∣∣∣∣
ε=0

= 2
f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

(Y − µ̂(t)(M,A,X)) ∝ ΦY (Q̂(t)).

C.2. TMLE considerations for binary outcome

For binary outcomes, a new loss function and submodel combination is required. We consider the followings

for binary outcome:

µ̂(εY ; f̂
(t)
M )(M,A,X) = expit

{
logit µ̂(t)(M,A,X) + εY

f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

}
, εY ∈ R ,

LY (µ̃) = − log µ̃(M,A,X) .

(25)

The TMLE procedure employing estimator ψ2(Q̂⋆) remains largely unchanged. However, the TMLE

procedure for employing ψ1(Q̂⋆) will have the following modifications.

Due to the nonlinear nature of the parametric submodel in (25) with respect to εY , computations of

η̂(t)(1, X) − η̂(t)(0, X) and ξ̂(t)(1, X) − ξ̂(t)(0, X) would depend on updated estimate of µ̂(t). Therefore,

unlike the continuous outcome case, the dependence of submodels π̂
(
εA; µ̂(t), f̂

(t)
m

)
and f̂M

(
εM ; µ̂(t), π̂(t)

)
on µ̂(t) would be through the updated estimate µ̂(t). This implies that once the estimate of µ is updated, the

estimates for fM and π must be updated accordingly. Given Q̂(t) = (µ̂(t), f̂
(t)
M , π̂(t), p̂X), we modify Step 2

of the continuous outcome case, discussed in Section 4.1, as follows.

Step 2a: Update π, by following the exact same procedure as the one discussed in Section 4.2, modula the

fact that µ̂ is replaced with µ̂(t). After performing the empirical risk minimization and obtaining ε̂A, we

update π̂(t+1) = π(ε̂A; µ̂(t), f̂
(t)
M ) and define Q̂(temp1) = (µ̂(t), π̂(t+1), f̂

(t)
M , p̂X). Condition (C3) implies that

PnΦA(Q̂(temp1)) = oP (n−1/2).
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Step 2b: Update fM , by following the exact same procedure as the one discussed in Section 4.2, modula

the fact that µ̂ is replaced with µ̂(t). After performing the empirical risk minimization and obtaining ε̂M ,

we update f̂
(t+1)
M = f̂M (ε̂M ; µ̂(t), π̂(t+1)) and define Q̂(temp2) = (µ̂(t), π̂(t+1), f̂

(t+1)
M , p̂X). Condition (C3)

implies that PnΦM (Q̂(temp2)) = oP (n−1/2).

Step 2c: Update µ, by performing an empirical risk minimization to find

ε̂Y = argmin
εY ∈R

PnLY (µ̂(εY ; f̂
(t+1)
M )) . (26)

This empirical risk minimization can be achieved by fitting the following logistic regression without the

intercept term:

Y ∼ offset
(
logit µ̂(t)) + Ĥ

(t)
Y (M,A,X) , where Ĥ

(t)
Y (M,A,X) :=

f̂
(t+1)
M (M | a0, X)

f̂
(t+1)
M (M | A,X)

.

The coefficient in front of Ĥ
(t)
Y (M,A,X) corresponds to the value of ε̂Y as a solution to the optimization

problem in (26). We update µ̂(t+1) = µ̂(ε̂Y ; f̂
(t+1)
M ), and define Q̂(t+1) = (µ̂(t+1), π̂(t+1), f̂

(t+1)
M , p̂X).

Condition (C3) implies that PnΦY (Q̂(t+1)) = oP (n−1/2). Let t = t+ 1 and continue to Step 2a.

Assume that convergence of Step 2 is achieved at iteration t⋆. The resulting estimates of π, fM , and µ are

denoted as π̂⋆ = π̂(t⋆), f̂⋆
M = f̂

(t⋆)
M , and µ̂⋆ = µ̂(t⋆) respectively. Define Q̂⋆ = (µ̂⋆, π̂⋆, f̂⋆

M , p̂X). The TMLE

plug-in is then given by ψ1(Q̂⋆), as described in (13).

C.3. Valid submodel through continuous mediator density

Given the submodel for fM (15), the range (−δ, δ) for εM should be chosen such that for any εM ∈ (−δ, δ), the
submodel is a valid probability density function in terms of f̂M (εM ; µ̂, π̂(t))(M | a0, X) ≥ 0. Let ξ̂(t)(M,X) =∑1

a=0 µ̂(M,a,X) π̂(t)(a | X) and θ̂(t)(X) =
∫
ξ̂(t)(m,X) f̂

(t)
M (m | a0, X) dm.

Let S
(t)
pos denote the set of indices for observations with

ξ̂(t)(Mi, Xi)− θ̂(t)(Xi)

π̂(t)(a0 | Xi)
> 0 .

For i ∈ S(t)
pos, f̂M (εM , Q̂(t))(M | a0, X) ≥ 0 implies that εM ≥ L(t)

i , where L
(t)
i := − π̂(t)(a0|Xi)

ξ̂(t)(Mi,Xi)−θ̂(t)(Xi)
.

Similarly, define S
(t)
neg to be the set of indices for observations with

ξ̂(t)(Mi, Xi)− θ̂(t)(Xi)

π̂(t)(a0 | Xi)
< 0.

For i ∈ S(t)
neg, f̂M (εM , Q̂(t))(M | a0, X) ≥ 0 implies that εM ≤ R(t)

i , where R
(t)
i := − π̂(t)(a0|Xi)

ξ̂(t)(Mi,Xi)−θ̂(t)(Xi)
.

Let L(t) = argmaxi∈S(t)
pos
L

(t)
i and R(t) = argmini∈S(t)

neg
R

(t)
i . For the given dataset, (L,R) constitutes

a valid domain for εM . For any εM ∈ (L,R), we have f̂M (εM ; µ̂, π̂(t))(M | a0, X) ≥ 0. Any selection of δ

ensuring (−δ, δ) ⊆ (L,R) would be applicable for carrying out the TMLE procedure. Note that the valid

domain for εM changes over iteration alongside the iterative updates of fM and π. Consequently, the choice of

δ should be relatively small to guarantee the submodel defined in (15) is a valid submodel over all iterations.

C.4. TMLE algorithms

The detailed procedures of constructing a TMLE-based plug-in estimator for ψ(Q) in (1), when M is binary,

continuous, or multivariate is shown in Algorithms 1, 2, and 3, respectively.
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Algorithm 1 TMLE based on mediator density estimation with binary M (ψ1(Q̂⋆))

1: Obtain initial nuisance estimates, denoted by π̂(0)(A | X), f̂
(0)
M (M | A,X) and µ̂(0)(M,A,X).

(nuisance estimate of Qj at tth iteration will be denoted by Q̂
(t)
j )

2: Define loss functions & submodels indexed by εA, εM , εY . Given Q̂(t) = (π̂(t), f̂
(t)
M , µ̂(t)):

• Define the parametric submodels at iteration t as follows:

π̂
(
εA; µ̂

(t)
, f̂

(t)
M

)
(1 | X) = expit

[
logit{π̂(t)

(1 | X)} + εA
{
η̂
(t)

(1, X) − η̂
(t)

(0, X)
}]

, εA ∈ R ,

f̂M
(
εM ; µ̂

(t)
, π̂

(t)
)
(1 | A,X) = expit

[
logit

{
f̂
(t)
M (1 | A,X)

}
+ εM

{
ξ̂(t)(1, X) − ξ̂(t)(0, X)

π̂(t)(A | X)

}]
, εM ∈ R ,

µ̂(εY ) = µ̂
(t)

+ εY , εY ∈ R ,

where η̂(t)(a,X) =
∫
µ̂(t)(m, a,X) f̂

(t)
M (m|a0, X) dm, ξ̂(t)(m,X) =

∑1
a=0 µ̂

(t)(m, a,X) π̂(t)(a|X).

• Define the loss functions at iteration t as follows:

LA(π̃)(O) = − log π̃(A | X) , LM (f̃M )(O) = −I(A = a0) log f̃M (M | A,X) ,

LY

(
µ̃; f̂

(t)
M

)
(O) =

f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ̃(M,A,X)}2
.

3: Update π̂(0)(A | X) and f̂
(0)
M (M | A,X) iteratively. We start with updating π̂ first, however the updating

process can begin with either π̂ or f̂M . At tth iteration:

• Given Q̂(t) = (π̂(t), f̂
(t)
M , µ̂(0)), fit the following logistic regression without an intercept:

A ∼ offset
(
logit π̂

(t)
(1 | X)

)
+ Ĥ

(t)
A

(
X
)
, where Ĥ

(t)
A (X) := η̂

(t)
(1, X) − η̂

(t)
(0, X) .

The coefficient in front of Ĥ
(t)
A (X) is the minimizer to ε̂A = argminεA∈R PnLA

(
π̂
(
εA; µ̂(0), f̂

(t)
M

))
.

Update π̂(t) to π̂(t+1) = π̂(ε̂A; µ̂, f̂
(t)
M ).

• Given Q̂(t) = (π̂(t+1), f̂
(t)
M , µ̂(0)), fit the following logistic regression without an intercept:

M ∼ offset
(
logit f̂

(t)
M (1 | a0, X)

)
+ Ĥ

(t)
M

(
X
)
, where Ĥ

(t)
M

(
X
)
:=

ξ̂(t)(1, X) − ξ̂(t)(0, X)

π̂(t+1)(a0 | X)
.

Note that ξ̂(t) is computed using µ̂(0) and π̂(t+1).

The coefficient in front of Ĥ
(t)
M (X) is the minimizer to ε̂M = argminεM∈R PnLM

(
f̂M
(
εM ; µ̂(0), π̂(t+1)

))
.

Update f̂
(t)
M to f̂

(t+1)
M = f̂M (ε̂M ; µ̂, π̂(t+1)).

• Let Q̂(t+1) = (π̂(t+1), f̂
(t+1)
M , µ̂(0)). Iterate over this step while |PnΦ(Q̂(t+1))| > Cn = oP (n−1/2).

Assume convergence is achieved at iteration t = t⋆. Let π̂⋆ = π̂(t⋆) and f̂⋆
M = f̂

(t⋆)
M .

4: Update µ̂(0)(M,A,X) in one step.

• Given Q̂(t∗) = (π̂⋆, f̂⋆
M , µ̂(0)), fit the following weighted regression:

Y ∼ offset(µ̂
(0)

(M,A,X)) + 1, with weight = f̂
⋆
M (M | a0, X)/f̂

⋆
M (M | A,X).

The intercept is the minimizer to ε̂Y = argminεY ∈R PnLY

(
µ̂(εY ); f̂⋆

M

)
.

Update µ̂(0)(M,A,X) as µ̂⋆(M,A,X) = µ̂(0)(M,A,X) + ε̂Y .

• Let Q̂⋆ = (π̂⋆, f̂⋆
M , µ̂⋆).

5: Return ψ1(Q̂⋆) = 1
n

∑n
i=1 θ̂

⋆(Xi) as the TMLE estimator, where

θ̂
⋆
(x) =

1∑
m=0

ξ̂
⋆
(m,x)f̂

⋆
M (m | a0, x) , and ξ̂

⋆
(m,x) =

1∑
a=0

µ̂
⋆
(m, a, x)π̂

⋆
(a | x).
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Algorithm 2 TMLE based on mediator density estimation with continuous M (ψ1(Q̂⋆))

1: Obtain initial nuisance estimates, denoted by π̂(0)(A | X), f̂
(0)
M (M | A,X) and µ̂(0)(M,A,X).

(nuisance estimate of Qj at tth iteration will be denoted by Q̂
(t)
j )

2: Define loss functions & submodels indexed by εA, εM , εY . Given Q̂(t) = (π̂(t), f̂
(t)
M , µ̂(t)):

• Define the parametric submodels at iteration t as follows:

π̂
(
εA; µ̂

(t)
, f̂

(t)
M

)
(1 | X) = expit

[
logit{π̂(t)

(1 | X)} + εA
{
η̂
(t)

(1, X) − η̂
(t)

(0, X)
}]

, εA ∈ R ,

f̂M (εM ; µ̂
(t)
, π̂

(t)
)(M | a0, X) = f̂

(t)
M (M | a0, X)

[
1 + εM

{
ξ̂(t)(M,X) − θ̂(t)(X)

π̂(t)(a0 | X)

}]
,−δ < εM < δ ,

or f̂M (εM ; µ̂
(t)
, π̂

(t)
)(M | a0, X)=

f̂
(t)
M (M | a0, X) exp

[
εM

π̂(t)(a0 | X)

(
ξ̂
(t)

(M,X) − θ̂
(t)

(X)
)]

∫∫
f̂
(t)
M (m | a0, x) exp

[
εM

π̂(t)(a0 | X)

(
ξ̂
(t)

(M,X) − θ̂
(t)

(X)
)]
dm dx

, εM ∈ R,

µ̂(εY ) = µ̂
(t)

+ εY , εY ∈ R ,

where η̂(t)(a,X) =
∫
µ̂(t)(m, a,X)f̂

(t)
M (m|a0, X)dm, ξ̂(t)(m,X) =

∑1
a=0 µ̂

(t)(m, a,X)π̂(t)(a|X).

η̂(t)(a,X) is computed numerically.

• Define the loss functions at iteration t as follows:

LA(π̃)(O) = − log π̃(A | X) , LM (f̃M )(O) = −I(A = a0) log f̃M (M | A,X) ,

LY

(
µ̃; f̂

(t)
M

)
(O) =

f̂
(t)
M (M | a0, X)

f̂
(t)
M (M | A,X)

{Y − µ̃(M,A,X)}2
.

3: Update π̂(0)(A | X) and f̂
(0)
M (M | A,X) iteratively. We start with updating π̂ first, however the updating

process can begin with either π̂ or f̂M . At tth iteration:

• Given Q̂(t) = (π̂(t), f̂
(t)
M , µ̂(0)), fit the following logistic regression without an intercept:

A ∼ offset
(
logit π̂

(t)
(1 | X)

)
+ Ĥ

(t)
A

(
X
)
, where Ĥ

(t)
A (X) := η̂

(t)
(1, X) − η̂

(t)
(0, X) .

The coefficient in front of Ĥ
(t)
A (X) is the minimizer to ε̂A = argminεA∈R PnLA

(
π̂
(
εA; µ̂(0), f̂

(t)
M

))
.

Update π̂(t) to π̂(t+1) = π̂(ε̂A; µ̂, f̂
(t)
M ).

• Given Q̂(t) = (π̂(t+1), f̂
(t)
M , µ̂(0)), obtain ε̂M by numerically solving this optimization problem:

ε̂M = argmin
εM∈R

PnLM

(
f̂M
(
εM ; µ̂

(0)
, π̂

(t+1)))
.

Update f̂
(t)
M to f̂

(t+1)
M = f̂M (ε̂M ; µ̂, π̂(t+1)).

• Let Q̂(t+1) = (π̂(t+1), f̂
(t+1)
M , µ̂(0)). Iterate over this step while |PnΦ(Q̂(t+1))| > Cn = oP (n−1/2).

Assume convergence is achieved at iteration t = t⋆. Let π̂⋆ = π̂(t⋆) and f̂⋆
M = f̂

(t⋆)
M .

4: Update µ̂(0)(M,A,X) in one step.

• Given Q̂(t∗) = (π̂⋆, f̂⋆
M , µ̂(0)), fit the following weighted regression:

Y ∼ offset(µ̂
(0)

(M,A,X)) + 1, with weight = f̂
⋆
M (M | a0, X)/f̂

⋆
M (M | A,X).

The intercept is the minimizer to ε̂Y = argminεY ∈R PnLY

(
µ̂(εY ); f̂⋆

M

)
.

Update µ̂(0)(M,A,X) as µ̂⋆(M,A,X) = µ̂(0)(M,A,X) + ε̂Y .

• Let Q̂⋆ = (π̂⋆, f̂⋆
M , µ̂⋆).

5: Return ψ1(Q̂⋆) = 1
n

∑n
i=1 θ̂

⋆(Xi) as the TMLE estimator, where

θ̂
⋆
(x) =

∫
ξ̂
⋆
(m,x)f̂

⋆
M (m | a0, x)dm , and ξ̂

⋆
(m,x) =

1∑
a=0

µ̂
⋆
(m, a, x)π̂

⋆
(a | x).
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Algorithm 3 TMLE based on avoiding mediator density estimation (ψ2(Q̂⋆))

1: Obtain initial nuisance estimates, π̂(A | X), µ̂(M,A,X), γ̂(X), f̂r
M (M,A,X), and κ̂a(X).

f̂r
M (M,A,X) can be estimated either via direct estimation of the density ratio, or via using π̂(A | X)

and λ̂(A | M,X) in (17). κ̂a(X) is obtained via a regression of µ̂(M,a,X) on X using only rows with

A = a0.

2: Define loss functions and parametric fluctuations indexed by εA, εγ and εY .

• Define the parametric submodels as follows:

µ̂(εY ) = µ̂+ εY , εY ∈ R ,

π̂(εA; κ̂)(1 | X) = expit
[
logit

{
π̂(1 | X)

}
+ εA

{
κ̂1(X) − κ̂0(X)

}]
, εA ∈ R ,

γ̂(εγ)(X) = γ̂(X) + εγ , εγ ∈ R .

• Define the loss functions as follows:

LY (µ̃; f̂
r
M )(O) = f̂

r
M (M,A,X){Y − µ̃(M,A,X)}2

,

LA(π̃)(O) = − log π̃(A | X) ,

Lγ(γ̃; π̂, ξ̂)(O) =
I(A = a0)

π̂(a0 | X)

(
ξ̂(M,X) − γ̃(X)

)2
.

3: Update µ̂(M,A,X) and π̂(A | X) in one step by solving the followings optimization problem:

ε̂Y = argmin
εY ∈R

PnLY (µ̂(εY ); f̂
r
M ) , ε̂A = argmin

εA∈R
PnLA(π̂(εA)).

• Fit the following weighted regression and logistic regression without intercept term

Y ∼ offset(µ̂(M,A,X)) + 1,weight = f̂
r
M ; A ∼ offset(logit π̂(1 | X)) + ĤA(X) , where ĤA(X) = κ̂1(X) − κ̂0(X) .

• ε̂Y and ε̂A equal the coefficients of the intercept and in front of ĤA(X), respectively.

• Update µ̂ and π̂ as follows

µ̂
⋆
= µ̂(ε̂Y ; f̂

r
M ) , π̂

⋆
= π(ε̂A; µ̂).

• Define ξ̂⋆(m,x) =
∑1

a=0 µ̂
⋆(m, a, x) π̂⋆(a | x). Estimate γ̂(X) by fitting the following linear regression using only

data points with A = a0:

ξ̂
⋆
(m,x) ∼ X.

4: Update γ̂(X) in one step by solving the followings optimization problem:

ε̂γ = argmin
εγ∈R

PnLγ

(
γ̂(εγ); π̂

⋆, ξ̂⋆
)
.

• Fit the following weighted linear regression

ξ̂⋆ ∼ offset(γ̂) + 1 , with weight =
I(A = a0)

π̂⋆(a0 | X)
.

• The coefficient of the intercept corresponds to the value of ε̂γ as a minimizer of the empirical risk.

• Update γ̂(X) as γ̂⋆ = γ̂(ε̂γ).

5: Return ψ2(Q̂⋆) = 1
n

∑n
i=1 γ̂

⋆(Xi) as the TMLE estimator.
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D. Proofs

We assume the following convergence rates for our nuisance estimates:

||π̂⋆ − π|| = oP (n− 1

k ) , ||f̂⋆
M − fM || = oP (n− 1

b ) ,

||µ̂⋆ − µ|| = oP (n
− 1

q ) , ||γ̂⋆ − γ|| = oP (n
− 1

j ) ,

||κ̂a − κa|| = oP (n− 1

ℓ ) , ||f̂r
M − fr

M || = oP (n− 1

c ) ,

||λ̂− λ|| = oP (n− 1

d ) .

(27)

D.1. The second-order remainder term, asymptotic linearity, and robustness for ψ1(Q̂
⋆)

D.1.1. R2(Q̂
⋆, Q) derivation

Given the von Mises expansion, we can write:

R2(Q̂
⋆, Q) = ψ(Q̂⋆)− ψ(Q) +

∫
Φ(Q̂⋆) dP (o)

=

∫∫∫
{µ(m,a, x)− µ̂⋆(m,a, x)}

{
f̂⋆
M (m | a0, x)
f̂⋆
M (m | a, x)

fM (m | a, x)

}
π(a | x) p(x) dx da dm

+

∫∫∫
µ̂⋆(m,a, x)

{
fM (m | a0, x)− f̂⋆

M (m | a0, x)
} { π(a0 | x)

π̂⋆(a0 | x)
π̂⋆(a | x)

}
p(x) dx da dm

+

∫∫∫ {
µ̂⋆(m,a, x) f̂⋆

M (m | a0, x)− µ(m,a, x)fM (m | a0, x)
}
π(a | x) p(x) dx da dm.

We introduce a term that is equal to zero into the above expression for R2(Q̂⋆, Q),

0 =

∫∫∫
fM (m | a0, x)
fM (m | a, x)

[µ(m,a, x)− µ̂(m,a, x)] fM (m | a, x) π(a | x) p(x) dx da dm

+

∫∫∫
[µ̂⋆(m,a, x)fM (m | a0, x)− µ(m,a, x)fM (m | a0, x)] π(a | x) p(x) dx da dm ,

which subsequently modifies the form of R2(Q̂⋆, Q) as the one given in Lemma 1. For a more clear derivation

of the convergence behavior, we can further decompose R2(Q̂⋆, Q) as follows:

R2(Q̂
⋆
, Q) =

∫ [
f̂⋆
M (m | a0, x)

f̂⋆
M (m | a, x)fM (m | a, x)

(fM (m | a, x) − f̂
⋆
M (m | a, x)) (µ(m, a, x) − µ̂

⋆
(m, a, x))

+
1

fM (m | a, x)
(f̂

⋆
M (m | a0, x) − fM (m | a0, x)) (µ(m, a, x) − µ̂

⋆
(m, a, x))

+
1

fM (m | a, x)
π(a0 | x)

π̂⋆(a0 | x)π(a | x)
(π̂

⋆
(a | x) − π(a | x)) µ̂⋆

(m, a, x)
(
fM (m | a0, x) − f̂

⋆
M (m | a0, x)

)
+

1

fM (m | a, x)
1

π̂⋆(a0 | x)
(π(a0 | x) − π̂

⋆
(a0 | x)) µ̂⋆

(m, a, x)
[
fM (m | a0, x) − f̂

⋆
M (m | a0, x)

] ]
dP (x, a,m).

(28)

D.1.2. Regularity discussions

In the following, we discuss two sets of regularity conditions.

[First set of regularity conditions.] Let X andM denote the domain of X and M . Assume

inf
x∈X ,a∈{0,1}

π̂⋆(a | x) > 0 , sup
x∈X ,a∈{0,1},m∈M

f̂⋆
M (m | a, x)/f̂⋆

M (m | 1− a, x) < +∞ ,

sup
x∈X ,a∈{0,1}

π(a | x)/π(1− a | x) < +∞ , inf
x∈X ,a∈{0,1},m∈M

fM (m | a, x) > 0 .

(29)
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Under the boundedness conditions of (29), we apply the Cauchy–Schwarz inequality to each term in (28),

leading to the following inequality:

R2(Q̂
⋆, Q) ≤ C

[
||f̂⋆

M − fM || × ||µ̂⋆ − µ||+ ||f̂⋆
M − fM || × ||π̂⋆ − π||

]
,

where C is a finite positive constant. Given the nuisance convergence rates in (27), we obtain

R2(Q̂
⋆, Q) ≤ oP

(
n
max

{
−
(

1

b
+ 1

q

)
,−( 1

b
+ 1

k
)
})

. (30)

[Second set of regularity conditions.] Let ||f ||4 = (Pf4)1/4 denote the L4(P ) norm of the function f . Assume

there exists finite constant C > 0 such that∣∣∣∣∣∣∣∣ f̂⋆
M (. | a0, .)
f̂⋆
MfM

∣∣∣∣∣∣∣∣
4

≤ C ,

∣∣∣∣∣∣∣∣ 1

fM

∣∣∣∣∣∣∣∣
4

≤ C ,∣∣∣∣∣∣∣∣ 1

fM

π(a0 | .)
π̂⋆(a0 | .)π

∣∣∣∣∣∣∣∣
4

≤ C ,

∣∣∣∣∣∣∣∣ 1

fM

1

π̂⋆(a0 | .)

∣∣∣∣∣∣∣∣
4

≤ C .

(31)

Given that the boundedness conditions in (31) hold, we apply the Cauchy–Schwarz inequality to each

term in (28), resulting in the following inequality:

R2(Q̂
⋆, Q) ≤ C

[
||f̂⋆

M − fM ||4 × ||µ̂⋆ − µ||+ ||f̂⋆
M − fM || × ||π̂⋆ − π||4

]
.

We can arrive at the same result as in (30) by modifying the convergence behaviors of f̂⋆
M and π̂⋆ in (27) to

reflect a stronger L4(P )-consistency. This can be expressed as follows:

||π̂⋆ − π||4 = oP (n− 1

k ) , ||f̂⋆
M − fM ||4 = oP (n− 1

b ) . (32)

D.2. The second-order remainder term, asymptotic linearity, and robustness for ψ2a(Q̂
⋆)

D.2.1. R2(Q̂
⋆, Q) derivation

Given the von Mises expansion, we can write:

R2(Q̂
⋆, Q) = ψ(Q̂⋆)− ψ(Q) +

∫
Φ(Q̂⋆) dP (o)

=

∫∫∫
f̂r
M (m,a, x)[µ(m,a, x)− µ̂⋆(m,a, x)]fM (m | a, x)π(a | x)p(x) dx da dm

+

∫∫
π(a0 | x)
π̂⋆(a0 | x)

(ξ̂⋆(m,x)− γ̂⋆(x)) fM (m | a0, x) p(x)dx dm

+

∫
[κ̂1(x)− κ̂0(x)] (π(1 | x)− π̂⋆(1 | x)) p(x) dx

+

∫
γ̂⋆(x) p(x) dx−

∫
E [ξ(m,x) | a0, x] p(x) dx

=

∫∫∫ (
f̂r
M (m,a, x)− fr

M (m,a, x)
)

[µ(m,a, x)− µ̂⋆(m,a, x)] fM (m | a, x) π(a | x) p(x) dx da dm

+

∫∫∫
fr
M (m,a, x) [µ(m,a, x)− µ̂⋆(m,a, x)] fM (m | a, x) π(a | x) p(x) dx da

+

∫∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)
(ξ̂⋆(m,x)− γ̂⋆(x)) fM (m | a0, x) p(x) dx dm

+

∫∫
(ξ̂⋆(m,x)− γ̂⋆(x)) fM (m | a0, x) p(x) dx dm
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+

∫
[(κ̂1(x)− κ̂0(x))− (κ1(x)− κ0(x))] (π(1 | x)− π̂⋆(1 | x)) p(x) dx

+

∫
(κ1(x)− κ0(x)) (π(1 | x)− π̂⋆(1 | x)) p(x) dx

+

∫
γ̂⋆(x) p(x) dx−

∫
E [ξ(m,x) | a0, x] p(x) dx

=

∫ (
f̂r
M (m,a, x)− fr

M (m,a, x)
)

[µ(m,a, x)− µ̂⋆(m,a, x)] dP (m,a, x)

+

∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)
(γ(x))− γ̂⋆(x)) dP (x)

+

∫ [
(κ̂1(x)− κ̂0(x))− (κ1(x)− κ0(x))

]
(π(1 | x)− π̂⋆(1 | x)) dP (x).

D.2.2. Regularity discussions

In the following, we discuss two regularity conditions.

[First regularity condition.] Let X denote the domain of X. Assume

inf
x∈X ,a∈{0,1}

π̂⋆(a | x) > 0 . (33)

If the condition in (33) holds, then by applying Cauchy–Schwarz inequality, we arrive at the following

inequality:

R2(Q̂
⋆, Q) ≤ ||f̂r

M − fr
M || × ||µ̂⋆ − µ||+ C ||π̂⋆ − π|| × ||γ̂⋆ − γ||

+ ||κ̂1 − κ1|| × ||π̂⋆ − π||+ ||κ̂0 − κ0|| × ||π̂⋆ − π|| ,

where C is a finite positive constant. Given the nuisance convergence rates provide in (27), we have

R2(Q̂
⋆, Q) ≤ oP

[
n
max

{
−
(

1

c
+ 1

q

)
,−
(

1

k
+ 1

j

)
,−( 1

k
+ 1

ℓ
)
}]
. (34)

[Second set of regularity conditions.] Let ||f ||4 = (Pf4)1/4 denote the L4(P ) norm of the function f . Assume
there exists a finite positive constant C such that∣∣∣∣∣∣∣∣ 1

π̂⋆

∣∣∣∣∣∣∣∣
4

≤ C . (35)

Given the boundedness conditions in (35) hold, we apply the Cauchy-Schwarz inequality to each term in

(37), resulting in the following inequality:

R2(Q̂
⋆, Q) ≤ ||f̂r

M − fr
M || × ||µ̂⋆ − µ||+ C ||π̂⋆ − π||4 × ||γ̂⋆ − γ||

+ ||κ̂1 − κ1|| × ||π̂⋆ − π||+ ||κ̂0 − κ0|| × ||π̂⋆ − π|| .

We can arrive at the same result as in (34) by modifying the convergence behaviors of π̂⋆(A | X) in (27)

to reflect a stronger L4(P )-consistency. This can be expressed as follows:

||π̂⋆ − π||4 = oP (n− 1

k ) .

Remark 4 It is important to note that the nuisance estimates γ̂⋆ and κ̂a depend on the estimates of ξ̂⋆ and

µ̂⋆, respectively. Moreover, ξ̂⋆ itself relies on the estimates of µ̂⋆ and π̂⋆. However, the L2(P ) convergence

conditions ||γ̂⋆ − γ|| = oP (n
− 1

j ) and ||κ̂a − κa|| = oP (n− 1

ℓ ), from display 27, indicate the convergence of

the sequential regressions for any choice of π̃ ∈ Mπ and µ̃ ∈ Mµ, irrespective of the correctness of these

nuisance estimates. To make this dependence more explicit, the respective convergence rates can be restated

as follows:

||γ̂⋆(.; µ̂⋆, π̂⋆)− γ(.; µ̂⋆, π̂⋆)|| = oP (n
− 1

j ) , ||κ̂a(.; µ̂
⋆)− κa(.; µ̂

⋆)|| = oP (n− 1

ℓ ) . (36)
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D.3. The second-order remainder term, asymptotic linearity, and robustness for ψ2b(Q̂
⋆)

D.3.1. R2(Q̂
⋆, Q) derivation

Given the von Mises expansion, we can write:

R2(Q̂
⋆
, Q) = ψ(Q̂

⋆
) − ψ(Q) +

∫
Φ(Q̂

⋆
) dP (o)

=

∫∫∫
λ̂(a0 | m,x)
λ̂(a | m,x)

π̂⋆(a | x)
π̂⋆(a0 | x)

[µ(m, a, x) − µ̂
⋆
(m, a, x)] fM (m | a, x) π(a | x) p(x) dx da dm

+

∫∫
π(a0 | x)
π̂⋆(a0 | x)

(ξ̂
⋆
(m,x) − γ̂

⋆
(x)) fM (m | a0, x) p(x) dx dm

+

∫
[κ̂1(x) − κ̂0(x)]

(
π(1 | x) − π̂

⋆
(1 | x)

)
p(x) dx

+

∫
γ̂
⋆
(x) p(x) dx−

∫
E [ξ(m,x) | a0, x] p(x) dx

=

∫∫∫
λ̂(a0 | m,x)
λ̂(a | m,x)

(
π̂(a | x)
π̂⋆(a0 | x)

−
π(a | x)
π(a0 | x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)]fM (m | a, x) π(a | x) p(x) dx da dm

+

∫∫∫
π(a | x)
π(a0 | x)

(
λ̂(a0 | m,x)
λ̂(a | m,x)

−
λ(a0 | m,x)
λ(a | m,x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)]fM (m | a, x) π(a | x) p(x) dx da dm

+

∫∫∫
f
r
M (m, a, x)[µ(m, a, x) − µ̂

⋆
(m, a, x)] fM (m | a, x) π(a | x) p(x) dx da

+

∫∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)
(ξ̂

⋆
(m,x) − γ̂

⋆
(x)) fM (m | a0, x) p(x) dx dm

+

∫∫
(ξ̂

⋆
(m,x) − γ̂

⋆
(x)) fM (m | a0, x) p(x) dx dm

+

∫
[(κ̂1(x) − κ̂0(x)) − (κ1(x) − κ0(x))] (π(1 | x) − π̂(1 | x)) p(x) dx

+

∫
(κ1(x) − κ0(x))

(
π(1 | x) − π̂

⋆
(1 | x)

)
p(x) dx

=

∫
λ̂(a0 | m,x)
λ̂(a | m,x)

(
π̂⋆(a | x)
π̂⋆(a0 | x)

−
π(a | x)
π(a0 | x)

)
[µ(m, a, x) − µ̂(m, a, x)] dP (m, a, x)

+

∫
π(a | x)
π(a0 | x)

(
λ̂(a0 | m,x)
λ̂(a | m,x)

−
λ(a0 | m,x)
λ(a | m,x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)] dP (m, a, x)

+

∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)
(γ(x)) − γ̂

⋆
(x)) dP (x)

+

∫
[(κ̂1(x) − κ̂0(x)) − (κ1(x) − κ0(x))]

(
π(1 | x) − π̂

⋆
(1 | x)

)
dP (x).

For a clearer derivation of the convergence behavior, we can further decompose R2(Q̂⋆, Q) as followings:

R2(Q̂
∗
, Q) =

∫
λ̂(a0 | m,x)

λ̂(a | m,x)π̂⋆(a0 | x)
(
π̂
⋆
(a | x) − π(a | x)

)
[µ(m, a, x) − µ̂(m, a, x)] dP (m, a, x)

+

∫
λ̂(a0 | m,x)

λ̂(a | m,x)π̂⋆(a0 | x)
π(a | x)

π̂⋆(a0 | x)π(a0 | x)
(
π(a0 | x) − π̂

⋆
(a0 | x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)] dP (m, a, x)

+

∫
π(a | x)

π(a0 | x)λ̂(a0 | m,x)

(
λ̂(a | m,x) − λ(a | m,x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)] dP (m, a, x)

+

∫
π(a | x)
π(a0 | x)

λ(a | m,x)
λ̂(a0 | m,x)λ(a0 | m,x)

(
λ(a0 | m,x) − λ̂(a0 | m,x)

)
[µ(m, a, x) − µ̂

⋆
(m, a, x)] dP (m, a, x)

+

∫ (
π(a0 | x)
π̂⋆(a0 | x)

− 1

)
(γ(x)) − γ̂

⋆
(x)) dP (x)

+

∫
[(κ̂1(x) − κ̂0(x)) − (κ1(x) − κ0(x))]

(
π(1 | x) − π̂

⋆
(1 | x)

)
dP (x).

(37)



TMLE for the Front-Door Functional 39

D.3.2. Regularity discussions

In the following, we discuss two sets of regularity conditions.

[First set of regularity conditions.] Let X andM denote the domain of X and M . Assume

inf
a∈{0,1},x∈X

π̂⋆(a | x) > 0 , sup
x∈X ,a∈{0,1},m∈M

λ̂(a | x,m)/λ̂(1− a | x,m) < +∞ ,

sup
x∈X ,a∈{0,1}

π(a | x)/π(1− a | x) < +∞ , inf
x∈X ,a∈{0,1},m∈M

λ̂(a | m,x) > 0 .
(38)

Under the boundedness conditions of (38), we apply the Cauchy–Schwarz inequality to each term in (37),

leading to the following inequality:

R2(Q̂
⋆, Q) ≤ C

[
||π̂⋆ − π|| × ||µ̂⋆ − µ||+ ||λ̂− λ̂|| × ||µ̂⋆ − µ||

]
+ ||π̂⋆ − π|| × ||γ̂⋆ − γ||+ ||(κ̂1 − κ̂0)− (κ1 − κ0)|| × ||π̂⋆ − π||

]
,

where C is a finite positive constant. Given the nuisance convergence rates in (27), we obtain

R2(Q̂
⋆, Q) ≤ oP

[
n
max

{
−
(

1

q
+ 1

k

)
,−
(

1

d
+ 1

q

)
,−
(

1

k
+ 1

j

)
,−( 1

k
+ 1

ℓ
)
}]
. (39)

[Second set of regularity conditions.] Let ||f ||4 = (Pf4)1/4 denote the L4(P ) norm of the function f . Assume
there exists a finite positive constant C such that

∣∣∣∣∣∣∣∣ λ̂(a0 | .)
λ̂ π̂⋆(a0 | .)

∣∣∣∣∣∣∣∣
4

≤ C ,

∣∣∣∣∣∣∣∣ λ̂(a0 | .)
λ̂ π̂⋆(a0 | .)

π

π̂⋆(a0 | X) π(a0 | .)

∣∣∣∣∣∣∣∣
4

≤ C ,

∣∣∣∣∣∣∣∣ π

π(a0 | .) λ̂(a0 | .)

∣∣∣∣∣∣∣∣
4

≤ C ,

∣∣∣∣∣∣∣∣ ( π(a0 | .)
π̂⋆(a0 | .)

− 1

) ∣∣∣∣∣∣∣∣
4

≤ C .

(40)

Given that the boundedness conditions in (40) hold, we apply the Cauchy-Schwarz inequality to each term

in (37), resulting in the following inequality:

R2(Q̂
⋆, Q) ≤ C

[
||π̂⋆ − π||4 × ||µ̂− µ||+ ||λ̂− λ̂||4 × ||µ̂⋆ − µ||

]
+ ||π̂⋆ − π||4 × ||γ̂⋆ − γ||+ ||(κ̂1 − κ̂0)− (κ1 − κ0|| × ||π̂⋆ − π||

]
.

We can arrive at the same result as in (39) by modifying the convergence behaviors of λ̂(A | M,X) and

π̂⋆(1 | X) in (27) to reflect a stronger L4(P )-consistency. This can be expressed as follows:

||π̂⋆ − π||4 = oP (n− 1

k ) , ||λ̂− λ||4 = oP (n− 1

d ) .
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E. Additional details on simulations

E.1. Simulation 1: Confirming theoretical properties

Detailed descriptions of the DGPs used in Simulation 1 are provided below. The DGP with a univariate

mediator is as follows:

X ∼ Uniform(0, 1), A ∼ Binomial
(
0.3 + 0.2X

)
, U ∼ N (1 +A+X, 1), Y ∼ N (U +M +X, 1),

(binary) M ∼ Binomial
(
expit(−1 +A+X)

)
, (continuous) M ∼ N (1 +A+X, 1).

(41)

For a multivariate mediator, we generate bivariate and quadrivariate mediators as follows:

M
dim=2∼ N

([
1 +A+X

−1− 0.5A+ 2X

]
,

[
2 1

1 3

])
, M

dim=4∼ N




1 +A+X

−1− 0.5A+ 2X

−1 + 2A+X

1 + 0.5A−X

 ,


5 −1 0 2

−1 6 1 0

0 1 4 3

2 0 3 7


 . (42)

With univariate binary mediator, estimating the mediator density fM through regressions is relatively

straightforward. Consequently, ψ1(Q̂⋆) and ψ+
1 (Q̂) are identified as the most suitable estimators. With

univariate continuous mediator, we evaluate a total of ten estimators. In using estimators ψ1(Q̂⋆) and

ψ+
1 (Q̂), we adopt the np package in R for a direct estimation of the mediator density. In using estimators

ψ2a(Q̂⋆) and ψ+
2a(Q̂), we adopt the densratio package for density ratio estimation. In using ψ2b(Q̂⋆) and

ψ+
2b(Q̂), we adopt the Bayes’ rule for density ratio estimation. We further use modified versions of ψ2a(Q̂⋆),

ψ+
2a(Q̂), ψ2b(Q̂⋆), ψ+

2b(Q̂) where dnorm is used to construct the density ratio via the direct estimation

of the mediator density. The estimators using dnorm serve as benchmarks where the mediator density is

accurately specified. With multivariate mediators, direct estimation of mediator densities can be challenging

and computationally demanding. In practical applications, estimators that circumvent density estimation

are preferred. Therefore, we only consider ψ2a(Q̂⋆), ψ+
2a(Q̂), ψ2b(Q̂⋆), ψ+

2b(Q̂), along with slight variations

where dnorm is used for mediator density ratio estimation, denoted by ψ2(Q̂⋆)-dnorm and ψ+
2 (Q̂)-dnorm,

yielding a total of six estimators.

Figures (2)–(5) present the results establishing the n1/2-consistency of the proposed estimators. In order,

figures correspond to the settings with univariate binary, univariate continuous, bivariate continuous, and

quadrivariate continuous mediators. In these figures, the left panel presents the n1/2-scaled bias and n−scaled
variance as a function of sample size for the TMLE estimators, while the right panel presents results from

the corresponding one-step estimators. The true variance in the variance plots is empirically calculated under

the true DGP with a sample size of n = 105. Additionally, 95% confidence interval for each point estimate

is derived and depicted as vertical bars in both the bias and variance plots. Sample standard deviation over

1000 multiple simulations is adopted for computing the confidence interval for each point estimate.

According to these figures, TMLE and one-step estimators are highly comparable under correct model

specifications. We observe that estimators relying on nonparametric kernel density estimation or mediator

density ratio estimation, as implemented via the densratio method, may face challenges in converging to

the expected values. This issue is evident in both univariate and multivariate continuous mediator settings,

even as the sample size grows. Overall, estimators based on ψ+
2b(Q̂) and ψ2b(Q̂⋆) which use Bayes rule to

estimate the density ratio, are recommended due to their consistent performance in achieving the expected

convergence results throughout the simulations.
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Fig. 2: Simulation results validating the n1/2-consistency behaviors, under univariate binary mediator.

The left column is for TMLE and the right column is for the one-step estimator counterpart.
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Fig. 3: Simulation results validating the n1/2-consistency behaviors, under univariate continuous

mediator. The left column is for TMLE and the right column is for the one-step estimator counterpart.
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Fig. 4: Simulation results validating the n1/2-consistency behaviors, under bivariate continuous

mediators. The left column is for TMLE and the right column is for the one-step estimator counterpart.
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Fig. 5: Simulation results validating the n1/2-consistency behaviors, under quadrivariate continuous

mediators. The left column is for TMLE and the right column is for the one-step estimator counterpart.
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E.2. Simulation 2: TMLE vs. one-step in a setting with weak overlap

We generated the treatment variable according to Binomial (0.001 + 0.998X), while the rest of the DGPs, as

specified in displays (41) and (42), remain unchanged.

E.3. Simulation 3: misspecified parametric models vs. flexible estimation

In our third set of simulations, we generated data according to the display in (43), where all variables are

univariate.

X ∼ Uniform(0, 1), (binary) M ∼ Binomial
(
expit(−1 +A+X −AX)

)
,

A ∼ Binomial
(
expit(−1 +X)

)
, (continuous) M ∼ N (1 +A+X −AX, 2),

U ∼ N (1 +A+X −AX, 2),Y ∼ N (U +M +X −MX, 2).

(43)

E.4. Simulation 4: impact of cross-fitting

In our fourth set of simulations, we generated data according to the display in (44): “(binary)” indicates the

DGP under binary mediator setup and “(continuous)” indicates the DGP under continuous mediator setup.

Xi ∼ Uniform(0, 1), i ∈ {1, . . . , 10},

A ∼ Binomial(expit(VA [1 X X2]T )),

(binary) U ∼ N
(
VU [1 A X AX1−5]

T , 2
)
,

(binary) M ∼ Binomial
(
expit

(
VM [1 A X AX1−5 X

2
6−10]

T
))
,

(binary) Y ∼ N
(
VY [U M X MX1−5 M

2 X2
6−10]

T , 2
)
,

(continuous) U ∼ N
(
VU [1 A X AX1−5]

T , 1
)
,

(continuous) M ∼ N
(
(VM [1 A X AX1−5 X

2
6−10]

T
)
, 1),

(continuous) Y ∼ N
(
VY [U M X MX1−5 M

2 X2
6−10]

T , 1
)
.

(44)

where

VA = 0.1 × [0.48, 0.07, 1,−1,−0.34,−0.12, 0.3,−0.35, 1,−0.1, 0.46, 0.33, 0, 0.45, 0.1,−0.32,−0.08,−0.2, 0.5, 0.5,−0.03]

VU = [−2,−1,−1, 2, 3, 0.5, 3, 2,−1, 1,−3, 1.5,−3,−2, 1, 3, 1.5]

VM = 0.025 × [3, 1.5,−1.5,−1.5,−1,−2,−3,−3,−1.5, 2, 1.5, 3, 1.5, 2, 0.5, 0.5, 3,−0.2,−0.33, 0.5, 0.3,−0.5]

VY = [1,−2,−3,−1.5, 1, 0.5,−2, 1.5,−2,−3,−3,−1.5,−1, 0.5, 3, 1.5, 0.5, 3, 1, 1.5,−2, 3,−1]

X = [X1, X2, X3, X4, X5, X6, X7, X8, X9, X10]

X1−5 = [X1, X2, X3, X4, X5]

X6−10 = [X6, X7, X8, X9, X10] .

Table 6 reveals a comparative analysis using a more sensitive random forest algorithm by increasing the

variability of predictions. Specifically, we adopted a sparser random forest with 200 trees and a minimum

node size of 1. According to this table, the estimation performance of random forest is inferior, as evidenced

by smaller CI coverage when compared with results produced by denser random forests (with 500 trees). In

contrast, results yielded by performing sample splitting in conjunction with the sparser random forest remains

highly comparable to those shown in Tables 3. These findings imply that in high-dimensional settings or

scenarios where high estimation variance is anticipated from nuisance estimates, cross-fitting proves beneficial

in reducing estimation bias and enhancing the stability of results.
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Table 6. Comparative analysis for the impact of cross-fitting on TMLEs and one-step estimators in conjunction with the use of

random forests. RF refers to random forest with 200 trees and a minimum node size of 1, and CF denotes random forest with

cross fitting using 5 folds.

TMLEs One-step estimators

Univariate Binary Univariate Continuous Univariate Binary Univariate Continuous

ψ1(Q̂
⋆) ψ2a(Q̂

⋆) ψ2b(Q̂
⋆) ψ+

1 (Q̂) ψ+
2a(Q̂) ψ+

2b(Q̂)

RF CF RF CF RF CF RF CF RF CF RF CF

n=500

Bias -0.175 -0.021 -0.368 0.058 -0.518 0.020 -0.105 -0.027 -0.088 0.068 -0.524 0.018

SD 0.167 0.140 0.379 0.334 0.381 0.288 0.052 0.130 0.429 0.322 0.384 0.289

MSE 0.059 0.020 0.279 0.115 0.413 0.083 0.014 0.018 0.192 0.108 0.421 0.084

CI coverage 18.1% 83.9% 42.4% 87% 33.9% 88.4% 19.6% 86.6% 53.9% 88.2% 33% 87.7%

CI width 0.133 0.397 0.657 0.995 0.743 0.880 0.122 0.396 0.657 0.992 0.744 0.879

n=1000

Bias -0.177 -0.016 -0.380 0.055 -0.520 0.013 -0.102 -0.020 -0.106 0.059 -0.525 0.010

SD 0.117 0.096 0.259 0.214 0.274 0.221 0.040 0.092 0.288 0.218 0.277 0.223

MSE 0.045 0.010 0.211 0.049 0.346 0.049 0.012 0.009 0.094 0.051 0.352 0.050

CI coverage 11.7% 89.5% 23.2% 89% 17.4% 87.6% 12.6% 90.6% 49.3% 87.9% 17.5% 88.2%

CI width 0.105 0.320 0.412 0.700 0.535 0.666 0.101 0.320 0.414 0.699 0.535 0.666

n=2000

Bias -0.175 -0.010 -0.372 0.065 -0.498 0.025 -0.098 -0.012 -0.120 0.067 -0.504 0.021

SD 0.083 0.074 0.179 0.149 0.188 0.166 0.034 0.073 0.196 0.151 0.192 0.166

MSE 0.038 0.006 0.170 0.026 0.283 0.028 0.011 0.005 0.053 0.027 0.291 0.028

CI coverage 5.7% 90.9% 9.9% 89.7% 4.9% 85.9% 8.5% 91.1% 50.9% 89.4% 5.2% 86.3%

CI width 0.084 0.250 0.294 0.526 0.384 0.506 0.082 0.250 0.295 0.525 0.385 0.505
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