Sufficient Identification Conditions and Semiparametric Estimation under Missing Not at Random Mechanisms

¡ Dept. of Biostatistics \& Bioinformatics, Emory University
Dept. of Biostatistics \& Medical Informatics, University of Wisconsin-Madison

Motivation

- Analyzing data missing-not-at-random (MNAR) is challenging
- Existing approaches for identification and inference under MNAR mechanisms rely on fully observed variables and/or untestable model assumptions.
A more relaxed set of statistical assumptions is needed.

Missing Data DAG Models

$L=\{X, Y\}$: variables with missing values,
$R=\left\{R_{x}, R_{y}\right\}$: binary indicators, $R_{i}=1$: observed, $R_{i}=0$: missing,
$L^{*}=\left\{X^{*}, Y^{*}\right\}$, deterministically defined proxy variables:
$L_{i}^{*}=L$ if $R_{i}=1$, and $L_{i}^{*}=$? if $R_{i}=0$.

- Missing data DAG models: a set of distributions $p\left(L, R, L^{*}\right)$ that factorizes as:

$$
\prod_{L_{i} \in L} p\left(L_{i} \mid \operatorname{pa}_{\mathcal{G}}\left(L_{i}\right)\right) \times \prod_{R_{i} \in R} p\left(R_{i} \mid \operatorname{pa}_{\mathcal{G}}\left(R_{i}\right)\right) \times \prod_{L_{i}^{*} \in L^{*}} p\left(L_{i}^{*} \mid \operatorname{pa}_{\mathcal{G}}\left(L_{i}^{*}\right)\right) .
$$

Missingness mechanism: $p(R \mid L)$, Full law: $p(L, R)$, Target law: $p(L)$, Observed data law: $p\left(L^{*}, R\right)$.

Criss-Cross MNAR Model

(a)

(b)

(c)

(d)

Figure: (a) Criss-cross MNAR model; (b) Permutation model [2]; (c) Block-parallel model [1]; (d) Block-conditional MAR model [3].

1. Neither full law nor target law is identifiable
(proof via a bivariate normal counterexample)
2. Only known structure thus far that prevents target law identification (besides $L_{i} \rightarrow R_{i}$ self-censoring)
3. Super model of several popular MNAR models shown above.
(a) $R_{X} \perp X\left|Y ; R_{Y} \perp Y\right| X, R_{X}$
(b) $R_{x} \perp X\left|Y ; R_{y} \perp Y, X\right| R_{x}, X^{\star} \Rightarrow R_{y} \perp Y\left|R_{x}=1, X ; R_{y} \perp Y, X\right| R_{x}=0$
4. Permits missing values for all variables.

Figure: Shadow variable setup considered in Wang et al, 2014

Identification

Partial Identification \& Testability

- $p(X \mid Y)$ is nonparametrically identifiable \Rightarrow testability of $X \rightarrow Y$.

$$
p(X \mid Y)=p\left(X \mid Y, R_{X}=1\right)=\frac{p\left(X, Y, R_{X}=1\right)}{\int p\left(x, Y, R_{X}=1\right) d x}
$$

$$
p\left(X, Y, R_{X}=1\right)=\frac{p\left(X, Y, R_{X}=1, R_{Y}=1\right)}{p\left(R_{Y}=1 \mid R_{X}=1, X, Y\right)}=\frac{p\left(X, Y, R_{X}=1, R_{Y}=1\right)}{p\left(R_{Y}=1 \mid R_{X}=1, X\right)} .
$$

Target Law Identification

- Nonparametric identification of $X \mid Y$ sheds light on identifying the target law: for two distinct points of $X: x_{1}$ and x_{0}

$$
\frac{p\left(x_{1} \mid y\right)}{p\left(x_{0} \mid y\right)}=\frac{p\left(y \mid x_{1}\right)}{p\left(y \mid x_{0}\right)} \times \frac{p\left(x_{1}\right)}{p\left(x_{0}\right)} .
$$

- Exponential family

$$
\begin{aligned}
& p(x) \sim \exp \left\{\frac{x \eta_{x}-b_{x}\left(\eta_{x}\right)}{\Phi_{x}}+c_{x}\left(x ; \Phi_{x}\right)\right\} \\
& p(y \mid x) \sim \exp \left\{\frac{y \eta-b(\eta)}{\Phi}+c(y ; \Phi)\right\}, g(\mu(\eta))=\alpha+\beta x
\end{aligned}
$$

- Assume X takes $k+1$ distinct values $x_{0}, x_{1}, \cdots, x_{k}$ Let $\varphi=[g \circ \mu]^{-1}$ and $\zeta=b \circ \varphi$,

$$
\begin{aligned}
\phi_{i}(\theta) & =\left\{\varphi\left(\alpha+x_{i} \beta\right)-\varphi\left(\alpha+x_{0} \beta\right)\right\} / \Phi \\
\zeta_{i}(\theta) & =\frac{-\zeta\left(\alpha+x_{1} \beta\right)+\zeta\left(\alpha+x_{0} \beta\right)}{\phi}+\frac{\eta_{x}\left(x_{1}-x_{0}\right)}{\Phi_{x}}+c\left(x_{1} ; \Phi_{x}\right)-c\left(x_{0} ; \Phi_{x}\right) \\
J & =\partial(\Phi, Z) / \partial \theta .
\end{aligned}
$$

- Target law $p(X, Y)$ is ID if: (i) $k \geq \operatorname{dim}(\theta)$, and (ii) J has full rank
- Generalizable to non-exponential family and multivariate X.

Full Law Identification

- Completeness condition: $\forall h(X)$ with finite mean, $\mathbb{E}\{h(X) \mid Y\}=0$ implies $h(X)=0$ a.s.
- Exponential family is a special case
- Full law $p\left(X, Y, R_{x}, R_{y}\right)$ is ID if:
(i) J is full rank, and (ii) completeness condition holds.

Bivariate Normal Example

$$
\binom{Y}{X} \sim\left[\binom{\mu_{1}}{\mu_{2}},\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)\right]
$$

- Target law and full law are ID: one of $\left\{\mu_{1}, \mu_{2}\right\}+$ any of $\left\{\sigma_{1}, \sigma_{2}, \rho\right\}$
- Pseudo-likelihood with logistic regression: $v_{k}=\left(x_{i}-x_{k}\right) \mid y_{i}-y_{k}$

$$
u_{k}= \begin{cases}1 & \text { if } y_{i}-y_{k}>0 \\ 0 & \text { if } y_{i}-y_{k}<0 .\end{cases}
$$

Estimation and Inference

Pseudo-likelihood

- Order statistics: $\tilde{X}=\left(x_{(1)}, \ldots, x_{(n)}\right)$

$$
\begin{aligned}
& p\left(x_{1}, \ldots, x_{n} \mid r_{x_{1}}=r_{y_{1}}=1, \ldots, r_{x_{n}}=r_{y_{n}}=1, y_{1}, \ldots, y_{n}, \tilde{X}\right) \\
& =\frac{\prod_{i=1}^{n} p\left(x_{i} \mid y_{i}\right)}{\sum_{\text {permutation of } x} \prod_{i=1}^{n} p\left(x_{(i)} \mid y_{i}\right)} \text { complexity of order } n! \\
& \approx \prod_{i<k} \frac{p\left(x_{i} \mid y_{i}\right) p\left(x_{k} \mid y_{k}\right)}{p\left(x_{i} \mid y_{i}\right) p\left(x_{k} \mid y_{k}\right)+p\left(x_{i} \mid y_{k}\right) p\left(x_{k} \mid y_{i}\right)} \\
& =\prod_{i<k} \frac{1}{1+Q\left(x_{i}, y_{i} ; x_{k}, y_{k}\right)}, \quad Q=O R^{-1} .
\end{aligned}
$$

- Model specification: $p(X \mid Y)$

Generalized Estimating Equations

- GEE

$$
\mathbb{E}\left[\frac{R_{x} \times R_{y}}{p\left(R_{y}=1 \mid R_{x}=1, X\right)} \times f(Y) \times(X-E(X \mid Y ; \theta))\right]=0
$$

- Optimal GEE

$$
f_{\text {opt }}(Y)=\left.\left[\mathbb{E}\left\{\left.\frac{(X-\mathbb{E}(X \mid Y ; \theta))^{2}}{p\left(R_{y}=1 \mid R_{X}=1, X\right)} \right\rvert\, Y\right\}\right]^{-1} \frac{\partial E(X \mid Y ; \theta)}{\partial \theta}\right|_{\theta=\theta}
$$

- Model specification: $p\left(R_{y}=1 \mid R_{X}=1, X\right)$ and $E(X \mid Y ; \theta)$

Simulation: Odds Ratio Estimation

Illustrating unbiasedness of the estimators and the efficiency of optimal GEE:

Future Work

- Developing a doubly-robust estimation framework.

References

[1] Karthika Mohan, Judea Pearl) and Jin Tian. Graphical models for inference with missing data. In Advances in Neural Intormation

${ }^{[2]}$ James $\begin{aligned} & \text { J. . Robins. Non-response models for the analysis of non-monotone non-ignorable missing data. Statistics in Medicine, } 16: 21-1\end{aligned}$
${ }^{[3]}$ Yan Zhou, Roderick J.A. Little, and Kalbiflisch John D. Block-conditional missing at random models for missing data. Statistical

