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1 Foundation

Property 1. If θ̂ is the MLE estimate of θ0, then it has the following property:

√
n(θ̂ − θ0)

d−→ N(0,
1

I(θ0)
)

2 Main content

2.1 G-computation & IPTW

Assumptions(Neal; Benkeser; Nabi)

1. Consistency
If the treatment is T, then the observed outcome Y is the potential outcome under treatment T. Formally,

T = t =⇒ Y = Y (t)

We could write this equivalently as follow:

Y = Y (T )

The consistency assumption states that a patients counterfactual outcome under their observed treatment
history is the outcome that we actually observe. (It might seem like consistency is obviously true, but
that is not always the case. For example, if the treatment specification is simply “get a dog” or “don’t
get a dog,” this can be too coarse to yield consistency. It might be that if I were to get a puppy, I would
observe Y = 1 (happiness) because I needed an energetic friend, but if I were to get an old, low-energy
dog, I would observe Y = 0 (unhappiness). However, both of these treatments fall under the category of
“get a dog,” so both correspond to T = 1. This means that Y(1) is not well defined, since it will be 1 or 0,
depending on something that is not captured by the treatment specification. In this sense, consistency
encompasses the assumption that is sometimes referred to as “no multiple versions of treatment.”)

2. Positivity
For all values of covariates x present in the population of interest (i.e. x such that P (X = x) > .0),

0 < P (T = 1 | X = x) < 1
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3. Conditional Exchangeability (randomization condition)

(Y (1), Y (0)) ⊥ T | X

4. No Interference
Yi (t1, . . . , ti−1, ti, ti+1, . . . , tn) = Yi (ti)

No interference means that my outcome is unaffected by anyone else’s treatment. Rather, my outcome is
only a function of my own treatment.

Theorem 2.1. G-computation
Given the assumptions of unconfoundedness, positivity, consistency, and no interference, we can identify the average
treatment effect:

E[Y (1)− Y (0)] = EX [E[Y | T = 1, X]− E[Y | T = 0, X]]

Proof:
E[Y (t)] =

∑
x

E[Y (t) | X = x]P (X = x) (Double expectation theorem)

=
∑
x

E[Y (t) | T = t,X = x]P (X = x) (conditional exchangeability)

=
∑
x

E(Y | T = t,X = x)P (X = x) (consistency positivity)

Theorem 2.2. Inverse Probability Weighting (IPW)
Given the assumptions of unconfoundedness, positivity, consistency, and no interference, we can identify the average
treatment effect:

E[Y (t)] = E

[
1(T = t)Y

P (t | X)

]
Proof:
The IPTW formula is equivalent to the G-computation formula.

E

[
I(T = 1)Y

P (T = 1 | X)

]
= E

[
E

[
I(T = 1)Y

P (T = 1 | X)
| T,X

]]
(Double expectation theorem)

= E

[
I(T = 1)

P (T = 1 | X)
E(Y | T,X)

]
= E

[
I(T = 1)

P (T = 1 | X)
E(Y | T = 1, X)

]
= E

[
E

[
I(T = 1)

P (T = 1 | X)
E(Y | T = 1, X) | X

]]
(Double expectation theorem)

= E

[
E(Y | T = 1, X)

P (T = 1 | X)
P (T = 1 | X)

]
= E[E(Y | T = 1, X)]

Theorem 2.3. Augumented IPW (Doubly robust)
Given the assumptions of unconfoundedness, positivity, consistency, and no interference, we can identify:

E [Y a] = E[E[Y | A = a,X]] = E

[
I(A = a)

p(A | X)
× (Y − E[Y | A,X]) + E[Y | A = a,X]

]
This method is doubly robust that as long as either the propensity score or outcome regression is correctly specified,
the estimation is then unbiased.

Proof:

g(a;α, η)− g(a) = E

[
I(A = a)

πa(X;α)
× (Y − b(a,X; η)) + b(a,X; η)

]
− E[b(a,X)]

= E

[
πa(X)

πa(X;α)
× (b(a,X)− b(a,X; η)) + (b(a,X; η)− b(a,X))

]
= E

[
(b(a,X; η)− b(a,X))×

(
1− πa(X)

πa(X;α)

)]
where E[Y | A = a,X = x)] = b(a, x) and πa(x) = p(a | x)

Question 2(BIOS760R quiz2): Assume we are interested in the average total effect (ATE) of a point exposure
A on an outcome Y , defined as ATE = E

[
Y 1 − Y 0

]
. In order to identify the ATE as a function of observed

data, we discussed the conditionally-ignorable model which encodes the following three assumptions:
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• Consistency: the potential outcome is the same of the observed outcome if the (hypothetical) intervention
value is the same as the observed value of the treatment, i.e., Y a = Y if A = a.

• Conditional ignorability: Y aA | X, for a = 0, 1 (where X is a set of observed variables.)

• Positivity: p(A = a | X = x) > 0 for all x where p(X = x) > 0.

Under the above assumptions, show that:

1. E [Y a] can be identified via the adjustment functional, i.e., E [Y a] = E[E[Y | A = a,X]].

E [Y a] = E[E(y | x,A = a)] (Double expectation over X, conditional ignorability, and consistency=⇒ G-comp)

=
∑
xy

yp(y | x,A = a)p(x)

=
∑
xy,a′

I(A = a)yp (y | x,A = a′) p(x)

=
∑
xya′

I (A = a′)

p (A = a′ | x)
· yp (y | x,A = a′) p (A = a′ | x) p(x)

= E

[
I(A = a)

P (A | x)
y

]
=⇒ IPW

2. The adjustment functional has a dual representation in terms of the IPW functional, i.e., E[E[Y | A =

a,X]] = E
[

I(A=a)
p(A|X) × Y

]

E

[
I(A = a)

P (A | X)
Y

]
= E

[
I(A = a)

P (A = a | X)
Y

]
= E

[
I(A = a)

P (A = a | X)
E[Y | A = a,X]

]
(Double expectation over A,X)

= E

[
E[Y | A = a,X] · P (A = a | X)

P (A = a | X)

]
(Double expectation over X)

= E[E[Y | A = a,X]]

3. Bonus point: IPW and adjustment functionals have a third equivalent representation in form of the
Augmented IPW functional I1 That is,

E[E[Y | A = a,X]] = E

[
I(A = a)

p(A | X)
× (Y − E[Y | A,X]) + E[Y | A = a,X]

]

2.2 do-calculus

2.2.1 Intervention

Intervention vs Condition(Glymour et al.): The difference between intervening on a variable and condition-
ing on that variable should, hopefully, be obvious. When we intervene on a variable in a model, we fix its
value. We change the system, and the values of other variables often change as a result. When we condition on
a variable, we change nothing; we merely narrow our focus to the subset of cases in which the variable takes
the value we are interested in. What changes, then, is our perception about the world, not the world itself.
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Figure 1: Illustration of the difference between conditioning and intervening (Neal)

Graphically: When we intervene to fix the value of a variable, we curtail the natural tendency of that variable
to vary in response to other variables in nature. This amounts to performing a kind of surgery on the graphical
model, removing all edges directed into that variable.

Notation: In notation, we distinguish between cases where a variable X takes a value x naturally and cases
where we fix X = x by denoting the latter do(X = x).

Assumption 2.1 ((Modularity / Independent Mechanisms / Invariance). If we intervene on a set of nodes
S ⊆ [n], then for all i, we have the following:

1. if i /∈ S, then P (xi | pai) remains unchanged

2. if i ∈ S, then P (xi | pai) = 1 if xi is the value that Xi was set to by the intervention; otherwise,
P (xi | pai) = 0

We assume that intervening on a variable Xi only changes the causal mechanism for Xi; it does not change
the causal mechanisms that generate any other variables(Neal). In other words, intervention has no “side
effects,” that is, that assigning the value xi for the valuable Xi for an individual does not alter subsequent
variables in a direct way. For example, being “assigned” a drug might have a different effect on recovery than
being forced to take the drug against one’s religious objections. When side effects are present, they need to be
specified explicitly in the model(Glymour et al.).

2.2.2 The adjustment formula

Example 1. The causal effect of P (Y = y | do(X = x)) is equal to the conditional probability Pm(Y = y |
X = x) ) that prevails in the manipulated model of 6b. The key to computing the causal effect lies in the
observation that Pm, the manipulated probability, shares two essential properties with P .

(a) original (b) intervention (c) no intervention need

Figure 2: A graphical model representing the effects of a new drug, with Z representing gender, X standing for
drug usage, and Y standing for recovery

We have the following observations
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1. the marginal probability P (Z = z) is invariant under the intervention, because the process determining
Z is not affected by removing the arrow from Z to X

2. the conditional probability P (Y = y | Z = z,X = x) is invariant, because the process by which Y
responds to X and Z, Y = f (x, z, uY ) remains the same, regardless of whether X changes spontaneously
or by deliberate manipulation.

Thus,
Pm(Y = y | Z = z,X = x) = P (Y = y | Z = z,X = x) and Pm(Z = z) = P (Z = z)

and

P (Y = y | do(X = x)) = Pm(Y = y | X = x) (by definition)

=
∑
z

Pm(Y = y | X = x, Z = z)Pm(Z = z | X = x)

=
∑
z

Pm(Y = y | X = x, Z = z)Pm(Z = z)

=
∑
z

P (Y = y | X = x, Z = z)P (Z = z)

In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X.
Figure 2c shows no arrow entering X, since X has no parents. This means that no surgery is required, which
gives us the license to treat X as a randomized treatment. Thus

P (Y = y | do(X = x)) = P (Y = y | X = x)

The general rule following this example is

Theorem 2.4 (The Causal Effect Rule). Given a graph G in which a set of variables PA are designated as the
parents of X, the causal effect of X on Y is given by

P (Y = y | do(X = x)) =
∑
z

P (Y = y | X = x, PA = z)P (PA = z)

where z ranges over all the combinations of values that the variables in PA can take.

If we multiply and divide the summand by the probability P (X = x | PA = z), we get a form similar to IPW

P (y | do(x)) =
∑
z

P (X = x, Y = y, PA = z)

P (X = x | PA = z)

Multiple intervention
We simply write down the product decomposition of the preintervention distribution, and strike out all factors
that correspond to variables in the intervention set

P (x1, x2, . . . , xn | do(x)) =
∏
i

P (xi | pai) for all i with Xi not in X

2.2.3 The backdoor criterion

[Adjusting for variables other than parents]
In the above discussion, we came to the conclusion that we should adjust for a variable’s parents, when trying
to determine its effect on another variable. But often, we know, or believe, that the variables have unmeasured
parents that, though represented in the graph, may be inaccessible for measurement. In those cases, we need
to find an alternative set of variables to adjust for.

Theorem 2.5 ((The Backdoor Criterion). Given an ordered pair of variables (X,Y ) in a directed acyclic graph G,
a set of variables Z satisfies the backdoor criterion relative to (X,Y ) if no node in Z is a descendant of X, and Z
blocks every path between X and Y that contains an arrow into X.
If a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect of X on Y is given by the
formula

P (Y = y | do(X = x)) =
∑
z

P (Y = y | X = x, Z = z)P (Z = z)

Go to page 1 5



The logic behind the backdoor criterion is fairly straightforward. In general, we would like to condition on a
set of nodes Z such that

1. We block all spurious paths between X and Y

2. We leave all directed paths from X to Y unperturbed

3. We create no new spurious paths

Here are two tricky cases

(a) effect modification (b) unavoidable collider

Figure 3: Two special cases in applying backdoor criterion

• In 3a, suppose we want to get P (Y = y | do(X = x),W = w). However, conditioning on W opens new
backdoor path, we need to further condition on T to break such path

P (Y = y | do(X = x),W = w) =
∑
t

P (Y = y | X = x,W = w, T = t)P (T = t |W = w)

• The examples so far give the impression that one should refrain from adjusting for colliders. But in 3b,
adjusting for collider Z is unavoidable. Therefore, we need to condition on additional variable(s). So
overall, we can condition on {E,Z}, {A,Z}, or {E,Z,A}

2.2.4 The Front-Door Criterion

[through two consecutive applications of the backdoor criterion]

Theorem 2.6 (The Frontdoor Criterion). A set of variables Z is said to satisfy the front-door criterion relative to
an ordered pair of variables (X,Y ) if

1. Z intercepts all directed paths from X to Y

2. There is no unblocked path from X to Z

3. All backdoor paths from Z to Y are blocked by X

If Z satisfies the front-door criterion relative to (X,Y ) and if P (x, z) > 0, then the causal effect of X on Y is
identifiable and is given by the formula

P (y | do(x)) =
∑
z

P (z | x)
∑
x′

P (y | x′, z)P (x′)

One example where the Front-door Criterion is applicable

Figure 4: Illustration of the difference between conditioning and intervening (Neal)
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2.3 Semi-parametric odds ratio model (Chen)

2.3.1 Odds ratio related definitions

Disease Exposure Total
Yes No

Yes n11 n12 n1+
No n21 n22 n2+
Total n+1 n+2 n++

Table 1: Counts on disease and exposure status

Let’s define
p11 = P (D = Yes | E = Yes )

p12 = P (D = Yes | E = No )

q11 = P (E = Yes | D = Yes )

q21 = P (E = No | D = Yes )

Relative risk
RR(D = Y es) =

p11
p12

Odds
Odds(D = Yes) =

q11
q21

Odds(D = No) =
q12
q22

Odds ratio

OR =
Odds(D = Yes )
Odds(D = No)

Connection

OR =
p11p22
p12p21

=
RR(D = Yes)

RR(D = No)

Similarly for the J*K table Define

X
Y 1 2 · · · K Total
1 n11 n12 · · · n1K n1+
2 n21 n22 · · · n2K n2+
...

...
...

...
...

...

J nJ1 nJ2
... nJK nJ+

Total n+1 n+2

... n+K n++

Table 2: Count in a J*K table

pjk = P (Y = j | X = k)
qkj = P (X = k | Y = j)
hjk = P (Y = j,X = k)

Odds ratio with J, K as reference level

θjk(J,K) =
pkjpKJ

pkJpKj

θjk(J,K) =
qkjqKJ

qkJqKj

θjk(J,K) =
hjkhJK
hjKhJk

Connection between OR with different reference

θjk(1, 1) =
pjkpJK
pjKpJk

× pjKpJ1
pj1pJK

× p1KpJk
p1kpJK

× pJKp11
pJ1p1K

=
θjk(J,K)θ11(J,K)

θj1(J,K)θ1k(J,K)
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Odds ratio representation of conditional and joint distribution

pjk =
θjk(J,K)pjK∑J
j=1 θjk(J,K)pjK

qkj =
θjk(J,K)qkJ∑K
k=1 θjk(J,K)qkJ

hjk =
θjk(J,K)hjKhJk∑J

j=1

∑K
k=1 θjk(J,K)hjKhJk

hjk =
θjk(J,K)pjKqkJ∑J

j=1

∑K
k=1 θjk(J,K)pjKqkJ

Odds ratio with condition
Define

pjkm = P (Y = j | X = k, Z = m)

qkjm = P (X = k | Y = j, Z = m)

hjkm = P (Y = j,X = k | Z = m)

then
θjk(J,K)(m) =

pjkmpJKm

pjKmpJkm

Odds ratio representation of conditional and joint distribution

pjkm =
θjk(J,K)(m)pjKm∑J
j=1 θjk(J,K)(m)pjKm

qkjm =
θjk(J,K)(m)qkJm∑K
k=1 θjk(J,K)(m)qkJm

hjkm =
θjk(J,K)(m)pjKmqkJm∑J

j=1

∑K
k=1 θjk(J,K)(m)pjKmqkJm

2.3.2 Odds ratio function

Let a(y, x) be an arbitrary positive domain Y ×X . Define the odds ratio function corresponding to the positive
function relative to a reference point (y0, x0) ∈ Y × X as

ηa {(y, y0) ; (x, x0)} =
a(y, x)a (y0, x0)

a (y0, x) a (y, x0)

it follows
ηa {(y, y0) ; (x, x0)} = [ηa {(y0, y) ; (x, x0)}]−1

ηa {(y, y0) ; (x, x0)} = [ηa {(y, y0) ; (x0, x)}]−1

ηa {(y, y0) ; (x, x0)} = ηa {(y0, y) ; (x0, x)}

Odds ratio function with different reference point can transform as follows

η {(y, y1) ; (x, x1)} =
η {(y, y0) ; (x, x0)} η {(y1, y0) ; (x1, x0)}
η {(y, y0) ; (x1, x0)} η {(y1, y0) ; (x, x0)}

The odds ratio function has the following properties

η {(y, y0) ; (x, x0)} > 0

η {(y0, y0) ; (x, x0)} = 1

η {(y, y0) ; (x0, x0)} = 1

Any bivariate function has the above three properties is an odds ratio function.
Odds ratio decomposition of density function
Let p(y | x) takes the role of a(y, x) then

ηp {(y, y0) ; (x, x0)} =
p(y | x)p (y0 | x0)
p (y | x0) p (y0 | x)
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Example 2. For the logistic regression we have

p(y | x) = exp {y (β0 + β1x)}
1 + exp (β0 + β1x)

then the odds ratio function has the following form

η {(y, y0) ; (x, x0)} = exp {β1 (y − y0) (x− x0)}

In particular,
η {(y = 1, y0 = 0) ; (x = 1, x0 = 0)} = exp (β1)

that’s why β1 is odds interpreted as the log odds ratio

Odds ratio representation of density functions

p(y | x) = η {(y, y0) ; (x, x0)} p (y | x0)∫
η {(y, y0) ; (x, x0)} p (y | x0) dy

q(x | y) = η {(y, y0) ; (x, x0)} q (x | y0)∫
η {(y, y0) ; (x, x0)} q (x | y0) dx

h(y, x) =
η {(y, y0) ; (x, x0)}h (y, x0)h (y0, x)s
η {(y, y0) ; (x, x0)}h (y, x0)h (y0, x) dydx

Odds ratio representation of a joint conditional density From

ηcp {(y, y0) ; (x, x0) | z} =
p(y | x, z)p (y0 | x0, z)
p (y0 | x, z) p (y | x0, z)

ηcq {(y, y0) ; (x, x0) | z} =
q(x | y, z)q (x0 | y0, z)
q (x0 | y, z) q (x | y0, z)

ηch {(y, y0) ; (x, x0) | z} =
h(y, x | z)h (y0, x0 | z)
h (y0, x | z)h (y, x0 | z)

we can get

p(y | x, z) = ηc {(y, y0) ; (x, x0) | z} p (y | x0, z)∫
ηc {(y, y0) ; (x, x0) | z} p (y | x0, z) dy

q(x | y, z) = ηc {(y, y0) ; (x, x0) | z} q (x | y0, z)∫
ηc {(y, y0) ; (x, x0) | z} q (x | y0, z) dx

h(y, x | z) = ηc {(y, y0) ; (x, x0) | z} p (y |, x0, z) q (x | y0, z)s
ηc {(y, y0) ; (x, x0) | z} p (y | x0, z) q (x | y0, z) dydx

Relationship between conditional and unconditional odds ratio functions

η [(y, y0) ; {(x, z), (x0, z0)}] =
b(y, x, z)b (y0, x0, z0)

b (y0, x, z) b (y, x0, z0)

=
b(y, x, z)b (y0, x0, z)

b (y0, x, z) p (y, x0, z)

b (y, x0, z) b (y0, x0, z0)

b (y0, x0, z) b (y, x0, z0)

= η {(y, y0) ; (x, x0) | z} η {(y, y0) ; (z, z0) | x0}

which implies that
η [(y, y0) ; {(x, z), (x0, z0)}]
η {(y, y0) ; (x, x0) | z}

= η {(y, y0) ; (z, z0) | x0}

also note that
η {(y, y0) ; (z, z0) | x0} = η [(y, y0) ; {(x0, z) , (x0, z0)}]

(cause η {(y, y0) ; (x0, x0) | z} = 1) thus we have

η {(y, y0) ; (x, x0) | z} =
η [(y, y0) ; {(x, z), (x0, z0)}]
η [(y, y0) ; {(x0, z) , (x0, z0)}]

Since x and z are in symmetric positions, we have

η [(y, y0) ; {(x, z), (x0, z0)}] = η {(y, y0) ; (z, z0) | x) η {(y, y0) ; (x, x0) | z0}

and

η {(y, y0) ; (z, z0) | x} =
η [(y, y0) ; {(x, z), (x0, z0)}]
η [(y, y0) ; {(x, z0) , (x0, z0)}]
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2.4 Types of graphs

From (Sherman and Shpitser)

Razieh’s graph
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3 Mediation analysis

We are interested in

1. Directed effect: A −→ Y

2. Indirect effect: A −→M −→ Y

Figure 5: Mediation

Two common violation of mediation analysis is

1. exposure-mediator confounders

2. mediator-outcome confounders

(a) exposure-mediator confounders (b) mediator-outcome confounders

Figure 6: Issues with the common approach to mediation

3.1 Mediation effects

1. Controlled direct effect (CDE)
CDE(m) = E[Y (1,m)− Y (0,m)]

we need
E[Y (a,m)]

to compute the controlled direct effect

2. Natural indirect effect (NID)
NIE = E[Y (1,M(1))− Y (1,M(0))]

3. Natural direct effect (NDE)
NDE = E[Y (1,M(0))− Y (0,M(0))]

we need
E [Y (a,M (a′))]

to compute the natural direct and indirect effects
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Relationships

ATE = E[Y (1)]− E[Y (0)]

= E[Y (1,M(1))]− E[Y (0,M(0))]

= E[Y (1,M(1))]− E[Y (1,M(0))] + E[Y (1,M(0))]− E[Y (0,M(0))]

= NIE + NDE

Identification assumptions for E[Y (a,m)]

1. Conditional randomization/ignorability:

• Y (a) ⊥ A | X
• Y (m) ⊥M | A,X

Without additional information, the conditional randomization condition is untestable (or empirically
unverifiable) since it does not constrain the observed data distribution. These conditions must be justified
by prior knowledge and scrutinized carefully.

2. Positivity:

• p(A = a | X = x) > 0 if p(X = x > 0) (treatment positivity)
• p(M = m | A = a,X = x) > 0 if p(X = x > 0) (mediator positivity)

The plausibility of this condition can usually be assessed empirically.

3. Consistency

Under above assumptions

p(Y (a,m)) = prob
∑
x

p(Y (a,m) | X = x)× p(X = x)

= ig
∑
x

p(Y (a,m) | A = a,M = m,X = x)× p(X = x)

= c
∑
x

p(Y | A = a,M = m,X = x)× p(X = x)

and
ψ(a,m) := E[Y (a,m)]

=
∑
x

E[Y | A = a,M = m,X = x]× p(X = x)

= E [E[Y | A = a,M = m,X]]

= E

[
I(A = a,M = m)

p(A = a,M = m | X)
× Y

]
= E

[
I(A = a,M = m)

p(A = a,M = m | X)
× (Y − E[Y | A,M,X]) + E[Y | A = a,M = m,X]

]
It’s efficient influence function is

∂

∂ϵ
ψ (a,m;Pϵ)

∣∣∣∣
ϵ=0

=

∫
y
∂

∂ϵ
{dPϵ(y | a,m, x)dPϵ(x)}

∣∣∣∣
ϵ=0

=

∫
y
∂

∂ϵ
{dPϵ(y | a,m, x)} dPϵ(x)

∣∣∣∣
ϵ=0

+

∫
ydPϵ(y | a,m, x) ∂

∂ϵ
{dPϵ(x)}

∣∣∣∣
ϵ=0

=

∫
ySϵ(y | a,m, x)dP (y | a,m, x)dP (x) +

∫
ySϵ(x)dP (y | a,m, x)dP (x)

=

∫
I (a′ = a,m′ = m)

p (a′,m′ | x)
ySϵ (y | a′,m′, x) dP (y, a′,m′, x) +

∫
E[Y | a,m, x]Sϵ(x)dP (x)

=∗

∫
I (a′ = a,m′ = m)

p (a′,m′ | x)
(y − E[Y | a,m, x])Sϵ (y | a′,m′, x) dP (o) +

∫
(E[Y | a,m, x]− ψ(a,m))Sϵ(x)dP (x)

=∗∗

∫
I (a′ = a,m′ = m)

p (a′,m′ | x)
(y − E[Y | a,m,X])Sϵ(o)dP (o) +

∫
(E[Y | a,m, x]− ψ(a,m))Sϵ(o)dP (o)

=

∫ {
I (a′ = a,m′ = m)

p (a′,m′ | x)
(y − E[Y | a,m,X]) + E[Y | a,m, x]− ψ(a,m)

}
Sϵ(o)dP (o)
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* E [Sϵ (y | a′,m′, x) | a′,m′, x] = 0 and E [Sϵ(x)] = 0

**
∫ I(a′=a,m′=m)

p(a′,m′|x) (y − E[Y | a,m,X])Sϵ (a
′,m′, x) dP (o) = 0

Therefore

CDE(m) = E [E[Y | A = 1,M = m,X]− E[Y | A = 0,M = m,X]]

= E

[
I(A = 1,M = m)× Y

p(A = 1 | X)× p(M = m | A = 1, X)
− I(A = 0,M = m)× Y

p(A = 0 | X)× p(M = m | A = 0, X)

]
= E

[{
I(A = 1,M = m)

p(A = 1 | X)× p(M = m | A = 1, X)
− I(A = 0,M = m)

p(A = 0 | X)× p(M = m | A = 0, X)

}
Y

+ E[Y | A = 1,M = m,X]− E[Y | A = 0,M = m,X]

]
Identification assumptions for E [Y (a,M (a′))]

1. Conditional ignorability:

• Y (a) ⊥ A | X (same as in CDE)

• Y (m) ⊥M | A,X (same as in CDE)

• M(a) ⊥ A | X

2. Cross-world assumption:
Y (a,m) ⊥M (a′) | X

it can be think of as separable direct effect

Figure 7: separable direct effect

3. Positivity: (same as in CDE)

• p(A = a | X = x) > 0 if p(X = x > 0) (treatment positivity)

• p(M = m | A = a,X = x) > 0 if p(X = x > 0) (mediator positivity)

4. Consistency: (same as in CDE)

With these assumptions

p (Y (a,M (a′))) = def
∑
m

p (Y (a,m),M (a′) = m)

= prob
∑
m,x

p (Y (a,m),M (a′) = m,x)

= pron
∑
m,x

p (Y (a,m) |M (a′) = m,x)× p (M (a′) = m | x)× p(x)

= (i)
∑
m,x

p(Y (a,m) | x)× p (M (a′) = m | x)× p(x)

= (ii,iii)
∑
m,x

p(Y (a,m) | A = a, x)× p (M (a′) = m | A = a′, x)× p(x)

= (c,iv)
∑
m,x

p(Y (m) | A = a,M = m,x)× p (M = m | A = a′, x)× p(x)

= c
∑
m,x

p(Y | A = a,m, x)× p (M = m | A = a′, x)× p(x)
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E [Y (a,M (a′))] =
∑
m,x

E[Y | A = a,m, x]× p (M = m | A = a′, x)× p(x)

= E [E [E[Y | A = a,M,X] | A = a′, X]]

= E

[
I(A = a)

p(A | X)
× p (M | A = a′, X)

p(M | A,X)
× Y

]
= E

[
I(A = a)

gA(a | X)

gM (m | a′, X)

gM (m | a,X)
(Y − b(m, a,X))

+
I (A = a′)

gA (a′ | X)

(
b(m, a,X)−

∫
b(m, a,X)gM (m | a′, X) dν(m)

)
+

∫
b(m, a,X)gM (m | a′, X) dν(m)

]
where

b(m, a, x) := E[Y |M = m,A = a,X = x]

gM (m | a, x) := p(M = m | A = a,X = x)

gA(a | x) := p(A = a | X = x)

3.2 Multiple mediators

For 8, there are multiple causal pathways:

A→ Y

A→ L→ Y

A→ L→M → Y

A→M → Y

Figure 8: Multiple mediators

we might be interested in

• effect of A on Y through L. That is

– A→ L→ Y

– A→ L→M → Y

which can be expressed as
E [Y (a, L (a′) ,M (a, L (a′)))]− E[Y (a)]

Figure 9: example of an identified effect

• effect of A on Y through L that doesn’t go through M . That is

A→ L→ Y

which can be expressed as
E [Y (a, L (a′) ,M(a, L(a)))]− E[Y (a)]
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Figure 10: example of an unidentified effect
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