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1 Probability rules

• Joint distributions: The joint cumulative distribution function (CDF) of random variables
(r.v.s) X and Y is the function FX,Y given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y).

The joint probability mass function (PMF) of discrete r.v.s X and Y is the function pX,Y given by

pX,Y (x, y) = P (X = x, Y = y).

The joint probability density function (PDF) of continuous r.v.s X and Y with joint CDF FX,Y is
the function fX,Y given by

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y).

• Marginalization: For discrete r.v.s X and Y , the marginal PMF of X is

P (X = x) =
∑
y

P (X = x, Y = y).

For continuous r.v.s X and Y with joint PDF fX,Y , the marginal PDF of X is

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy.

• Conditional distributions: For discrete r.v.s X and Y , the conditional PMF of Y given
X = x is

P (Y = y | X = x) =
P (X = x, Y = y)

P (X = x)
.

For continuous r.v.s X and Y with joint PDF fX,Y , the conditional PDF of Y given X = x is

fY |X(y | x) = fX,Y (x, y)

fX(x)
, ∀x that fX(x) > 0

• Bayes’ theorem:

P (X | Y ) =
P (X,Y )

P (X)
=

P (Y | X)P (X)

P (Y )

• Independence of random variables: Random variables X1, . . . , Xn are independent if

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) . . . P (Xn ≤ xn)

Go to page 1 1



• Expectation: The expected value (also called the expectation or mean) of a discrete r.v. X
whose distinct possible values are x1, x2, · · · is defined by

E(X) =

∞∑
xjP (X = xj) , or E(X) =

∑
x

x︸︷︷︸
value

P (X = x)︸ ︷︷ ︸
PMF at x

if the support is finite.

The expected value of a continuous r.v. X with PDF f is

E(X) =

∫ ∞

−∞
xf(x)dx.

Properties of Expectation:

1. Let g and h be functions of random variables X and Y (discrete or continuous) respectively,
and let a and b be constants.

E(aX + b) = aE(X) + b

E(X + Y ) = E(X) + E(Y )

E{ag(X) + bh(X)} = aE{g(X)}+ bE{h(X)}

2. IF X and Y be independent random variables, then

E(XY ) = E(X)E(Y )

E(g(X)h(Y )) = E(g(X))E(h(Y ))

• Covariance: The covariance between r.v.s X and Y is

Cov(X,Y ) = E{(X − E(X))(Y − E(Y ))} = E(XY )− E(X)E(Y )

Properties of Covariance:

1. Cov(X,X) = Var(X)

2. Cov(X,Y ) = Cov(Y,X)

3. Cov(X, c) = 0 for any constant c

4. Cov(aX, Y ) = aCov(X,Y ) for any constant a

5. Cov(X + Y,Z +W ) = Cov(X,Z) + Cov(X,W ) + Cov(Y, Z) + Cov(Y,W )

6. If X and Y are independent, then Cov(X,Y ) = 0, but the reverse is not necessarily true (only
true under normality assumption).

• Variance: The variance of r.v. X is

Var(X) = E(X − E(X))2 = E(X2)− E2(X)

The square root of the variance is called the standard deviation (SD):

SD(X) =
√
Var(X).

Properties of Variance:
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1. Let g(X) be a function r.v. X (discrete or continuous), and let a and b be constants:

Var(aX + b) = a2 Var(X).

Var{ag(X) + b} = a2 Var{g(X)}.

2. For two r.v.s X and Y :

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).

For n r.v.s X1, . . . , Xn:

Var (X1 + · · ·+Xn) = Var (X1) + · · ·+Var (Xn) + 2
∑
i<j

Cov (Xi, Xj)

3. If X and Y are independent, then

Var(X + Y ) = Var(X) + Var(Y ).

For n independent r.v.s X1, . . . , Xn

Var (X1 + · · ·+Xn) = Var (X1) + · · ·+Var (Xn)

• Conditional expectation:

E(Y | X = x) =
∑
y

yP (Y = y | X = x), if Y is discrete

E(Y | X = x) =

∫ ∞

−∞
yfY |X(y | x)dy, if Y is continuous.

• Law of total Expectation/Tower rule/Adam’s law:

E(X) = E(E(X | Y ))

E(X | Y ) = E(E(X | Z, Y ) | Y )

Properties of conditional expectation:

1. If X and Y are independent, then

E(Y | X) = E(Y ).

2. For any function h,
E(h(X)Y | X) = h(X)E(Y | X).

3. Linearity
E (Y1 + Y2 | X) = E (Y1 | X) + E (Y2 | X) .
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4. Projection interpretation: For any function h, the random variable Y − E(Y | X) is uncorre-
lated with h(X), i.e., cov(Y − E[Y | X], h(X)) = 0. Equivalently,

E[(Y − E(Y | X))h(X)] = 0.

Proof.
By applying the tower rule, we have

E[(Y − E(Y | X))h(X)] = E [E((Y − E(Y | X))h(X) | X)]

= E [h(X)E(Y − E(Y | X) | X)]

= E [h(X)(E(Y | X)− E(Y | X))]

= 0

• Conditional variance: The conditional variance of Y given X is

Var(Y | X) = E
(
(Y − E(Y | X))2 | X

)
= E

(
Y 2 | X

)
− E2(Y | X).

• Law of total Variance/Eve’s law:

Var(Y ) = E[Var(Y | X)] + Var(E[Y | X])

2 Inference

• Modes of Convergence: Under probability measure space (Ω,A, P ).

1. Convergence almost surely: Xn is said to converge almost surely toX, denoted byXn →a.s. X,
if there exists a set A ⊂ Ω such that P (Ac) = 0 and for each ω ∈ A,Xn(ω) → X(ω) in real
space. Equivalently,

Xn →a.s X ⇐⇒ ∀ϵ > 0. lim
n→∞

P

(
sup
m≥n

| Xm −X |> ϵ

)
= 0.

2. Convergence in probability: Xn is said to converge in probability to X, denoted by Xn →p X,
if for every ϵ > 0,

P (|Xn −X| > ϵ) → 0

3. Convergence in moments/means: For Xn, X ∈ Lr(P ), Xn is said to converge in r-th mean to
X, denoted by Xn →r X if

E (|Xn −X|r) → 0

(X ∈ Lr(P ): E(|X|r) < inf )

4. Convergence in distribution: Xn is said to converge in distribution to X, denoted by Xn →d

X, if the distribution functions of Xn and X, denoted by Fn and F respectively, satisfy

Fn(x) → F (x)

for each continuous point x of F .
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• Relationship among modes:

1. Xn →a.s. X =⇒ Xn →p X.

2. Xn →p X =⇒ Xnk
→a.s. X for some subsequence Xnk

.

3. Xn →r X =⇒ Xn →p X.

4. Xn →p X and |Xn|r is uniformly integrable (limλ→∞ supn E {|Xn| I (|Xn| ≥ λ)} = 0) =⇒
Xn →r X.

5. Xn →p X and lim supn E |Xn|r ≤ E|X|r =⇒ Xn →r X.

6. Xn →r X =⇒ Xn →r′ ,∀ 0 < r′ < r.

7. Xn →p X =⇒ Xn →d X.

8. Xn →p X if and only if for every subsequence {Xnk
}, there exists a further subsequence

{Xnkl
} such that Xnkl

→a.s. X.

9. Xn →d c, for some constant c =⇒ Xn →p c.

• Algebra of big O and small o:
O(·) and o(·) in calculus: For two sequences of real numbers {an} and {bn},

1. an = O (bn) if and only if ∃C ∈ R, such that |an| ≤ C |bn| , ∀n.

2. an = o (bn) if and only if an/bn → 0 as n → ∞.

O(·) and o(·) for random variables: Let X1, · · · , Xn and Y1, · · · , Yn be random variables defined a
probability space (Ω,A, P ).

1. Xn = O (Yn) , a.s. if and only if Xn(ω) = O (Yn(ω)), a.s. wrt P .

2. Xn = o (Yn) , a.s. if and only if Xn/Yn →a.s. 0.

3. Xn = Op (Yn) if and only if,for any ϵ > 0, there is a constant Cϵ > 0, such that

sup
n

P (|Xn| > Cϵ |Yn|) < ϵ

4. Xn = op (Yn) if and only if Xn/Yn →p 0.

Properties of big O and small o:

1. Xn = op(1) =⇒ Xn = Op(1).

2. Wn = Op(1), Xn = Op(1) =⇒ Wn +Xn = Op(1), WnXn = Op(1).

3. Wn = Op(1), Xn = op(1) =⇒ Wn +Xn = Op(1), WnXn = op(1).

4. Xn = Op (Yn) , Wn = Op (Zn) =⇒ WnXn = Op (YnZn) , Wn +Xn = Op (max (Zn, Yn))
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• Weak law of large numbers: If X1, X2, . . . , Xn are i.i.d with mean µ, then for sample mean
X̄n =

∑n
i=1 Xi/n, we have X̄n →p µ.

• Strong law of large numbers: If X1, X2, . . . , Xn are i.i.d with mean µ, then X̄n →a.s. µ.

• Central limit theorem: Suppose {X1, X2, . . . , Xn} is a sequence of i.i.d. random variables

with E(Xi) = µ and V ar(Xi) = σ2 < ∞ then as n → ∞, X̄ → N(µ, σ2

n )

• Score: For r.v X with PDF f(x; θ). Score Z is defined as the partial derivative with re-
spect to θ of the natural logarithm of the likelihood function:

Z = l′ =
∂

∂θ
log f(X; θ)

E(Z) = 0 and Z
d−→ N (0, I(θ))

• Fisher information: The variance of the score is defined to be the Fisher information

I(θ) = E

[(
∂

∂θ
log f(X; θ)

)2
]
= −E

[
∂2

∂θ2
log f(X; θ)

]
• Maximum likelihood estimation (MLE): Consider a parametric model f(x; θ) where θ ∈
Rk. Suppose we have n i.i.d observations X1, . . . , Xn

i.i.d

∼ f(x; θ). MLE estimator, denoted by θ̂, is
constructed by maximizing the likelihood function L(θ) or equivalently the log-likelihood function
l(θ)

L(θ) =

n∏
i=1

f(Xi; θ), l(θ) = log (L(θ)) =

n∑
i=1

log(f(Xi; θ)).

Properties of MLE estimators:

1. Consistency: θ̂ →p θ

2. Efficiency: it achieves the Cramer–Rao lower bound (discussed below) when the sample size
tends to infinity.

√
n(θ̂ − θ) →d N(0,

1

I(θ)
)

• Delta method: If a function g : R → R is continuously differentiable at θ ∈ R, and if

√
n(θ̂ − θ) → N(0, v(θ))

in distribution as n → ∞ for some variance v(θ), then

√
n(g(θ̂)− g(θ)) → N

(
0, g′(θ)2v(θ)

)
Proof.
Perform a Taylor expansion of g(θ̂) around θ̂ = θ :

g(θ̂) ≈ g(θ) + (θ̂ − θ)g′(θ).
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Rearranging yields √
n(g(θ̂)− g(θ)) ≈

√
n(θ̂ − θ)g′(θ).

The result follows, because multiplying
√
n(θ̂ − θ) by g′(θ) scales its variance by g′(θ)2.

• Continuous mapping theorem: Suppose that Xn →a.s. X or Xn →p X or Xn →d X.
Then for any continuous function g, g(Xn) converges to g(X) almost surely, or in probability, or in
distribution respectively.
• Slutsky Theorem: Suppose Xn →d X, Yn →p Y and Zn →p Z for some constant y and z.
Then

ZnXn + Yn →d zX + y.

• Cramer-Rao lower bound: Consider a parametric model f(x; θ) where θ ∈ R is a single

parameter. Let T be any unbiased estimator of θ based on data X1, . . . , Xn

i.i.d

∼ f(x; θ). Then
(under mild smoothness assumptions)

Var[T ] ≥ 1

nI(θ)
.

Proof.

Z =
∂

∂θ
log f (X1, . . . , Xn; θ) =

n∑
i=1

∂

∂θ
log f (Xi; θ) .

Given that

E
[
∂

∂θ
log f (Xi; θ)

]
= 0, Var

[
∂

∂θ
log f (Xi; θ)

]
= I(θ).

(The score has mean 0, and variance given by the Fisher information.) Then

E[Z] = 0, Var[Z] = nI(θ).

Note that the correlation between Z and the estimator T is always between −1 and 1:

Cov[Z, T ]2 ≤ Var[Z]×Var[T ] ≤ nI(θ)×Var[T ]

Since T is unbiased,

θ = E[T ] =
∫

T (x1, . . . , xn) f (x1, . . . , xn; θ) dx1 . . . dxn.

Differentiating both sides with respect to θ,

1 =

∫
T (x1, . . . , xn)

∂

∂θ
f (x1, . . . , xn | θ) dx1 . . . dxn

=

∫
T (x1, . . . , xn)

(
∂

∂θ
log f (x1, . . . , xn | θ)

)
f (x1, . . . , xn | θ) dx1 . . . dxn = Eθ[TZ].

Since E[Z] = 0, this implies
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Cov[T,Z] = E [(T − ET ) (Z − EZ)] = E [T (Z − EZ)] = E[TZ] = 1,

so Var[T ] ≥ 1
nI(θ) as desired.

Corollary.
For a parametric model f(x; θ) with a single parameter θ ∈ R, if T is any unbiased estimator of

g(θ) based on data X1, . . . , Xn
i.i.d∼ f(x; θ), then (under mild smoothness assumptions)

Varθ[T ] ≥
g′(θ)2

nI(θ)
Proof.
Similar as the previous proof but need Delta method additionally.

• Ancillary statistics: A statistics S(X) whose distribution does not depend on the parameter
θ is called an ancillary statistic. More precisely, a statistic S(X) is ancillary for Θ if it’s distribution
is the same for all θ ∈ Θ.
Example (Location Family Ancillary Statistic): Let X1, · · · , Xn be i.i.d. observations from a lo-
cation parameter family with CDF F (x − θ),−∞ < θ < ∞. Let X(1) < · · · < X(n) be the order
statistics from the sample. The range R = X(n) −X(1) is always an ancillary statistic.
Proof.
Suppose Z1, · · · , Zn are i.i.d. observations from F (x), with X1 = Z1 + θ, · · · , Xn = Zn + θ. It
follows that the CDF of the range R is

FR(r; θ) = Pθ(R ≤ r) = Pθ

(
max

i
Xi −min

i
Xi ≤ r

)
= Pθ

(
max

i
Zi −min

i
Zi ≤ r

)
The distribution of Zi does not dependent on θ. Thus, the CDF of R does not depend on θ and
hence R is ancillary.
Example: Let X1, · · · , Xn be i.i.d observations from N(µ, σ2). Let

S2 =
1

n− 1

n∑
i=1

(
Xi − X̄n

)2
We know that

S2 ∼ σ2

n− 1
χ2
n−1

so that S2 depends on σ2 but not on µ. Therefore, S2 is ancillary for

Θ1 =
{(

µ, σ2
)
: σ2 = σ2

0

}
,

but is not ancillary for
Θ2 =

{(
µ, σ2

)
: σ2 > 0

}
.
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