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1 introduction

Survival analysis Survival analysis is a kind of data analysis tricks for which the outcome variable of interest
is time until an event occurs. In order to calculate time to event, you must clearly define the time origin and
the event of interest.
Types of censoring

• Right censoring (most common): true survival time is more than the observed survival time

• Left censoring: true survival time is less than the observed survival time

• Interval censoring: survival time is only known to be between two value

Survival function probability that a person survives longer than some specified time t

S(t) = P[ surviving beyond time t] = P[T > t]

Complement of survival function probability that survival time is at most some specified time t

F (t) = 1− S(t) = 1− P[T > t] = P[T ≤ t]

Rate

derivative of S(t) =
d

dt
S(t) = S′(t) = lim

∆t→0

S(t+ ∆t)− S(t)

∆t

d

dt
S(t) ≈ S(t+ ∆t)− S(t)

∆t
= slope of a straight line between S(t) and S(t+ ∆t)

rate =
change in S(t)

change in time
=
S(t+ ∆t)− S(t)

(t+ ∆t)− t
=
S(t+ ∆t)− S(t)

∆t

Hazard rate add ”-” here to make this number positive

hazard rate = h(t) = −S
′(t)

S(t)
= −∂ logS(t)

∂t

Interpretation: the probability that people who lived to t died within the next interval is the hazard rate

Cumulative hazard function

H(t) =

∫ t

0

h(s)ds

Connections
H(t) = − logS(t), S(t) = e−H(t) = e−

∫ t
0
h(s)ds

Odds ratio & relative risk Under the case

Diseased Healthy
Exposed 20 380

Not exposed 6 594

we have

Relative Risk =
DE/VE
DN/VN

=
20/400

6/600
=
.05

.01
= 5

Odds Ratio =
DE/HE

DN/HN
=

20/380

6/594
≈ .052

.010
= 5.2
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1.1 Average rate as estimate of hazard rate

average (mortality) rate

during the interval (t, t+ ∆t) =
number of deaths
total time-at-risk

=
N(S(t)− S(t+ ∆t))

N(
∫ t+∆t

t
S(u)du)

=
mean number of deaths

mean survival time
=
S(t)− S(t+ ∆t)∫ t+∆t

t
S(u)du

≈ S(t)− S(t+ ∆t)
1
2∆t[S(t) + S(t+ ∆t)]

1.2 Probability q and rate R

probability of death = q = P [ death between t and t+ ∆t | alive at time t]

=
P [ dead between t and t+ ∆t]

P [ alive at time t]
=
S(t)− S(t+ ∆t)

S(t)
=
d(t)

S(t)

Let R be the average approximate rate. The complementary probability of survival is 1− q = p = S(t+∆t)
S(t)

R =
S(t)− S(t+ ∆t)

∆t
[
S(t)− 1

2d(t)
] =

S(t)/S(t)− S(t+ ∆t)/S(t)

∆t
[
S(t)/S(t)− 1

2d(t)/S(t)
] =

q

∆t
(
1− 1

2q
)

solve for q

q =
∆tR

1 + 1
2∆tR

the probability of death or disease in human population is almost always small (p ≈ 1 or q ≈ 0), under this
circumstance

R ≈ q/∆t

2 Life Tables

2.1 Types of life tables

Cohort life tables the cohort life table presents the mortality experience of a particular birth cohort.For
example, reflects the mortality experience of an actual cohort from birth until no lives remain in the group.

Current life tables the period life table presents what would happen to a hypothetical cohort.The period
life table may thus be characterized as rendering a ‘snapshot’ of current mortality experience and shows the
long-range implications of a set of age-specific death rates that prevailed in a given year.

Abridged life tables an abridged life table is based on a sequence of age intervals of any chosen length,
typically five years.

Complete life tables a complete life table contains data for every single year of age.

Our focus of the following with be on the current and complete life table.

2.2 Life table construction

We need seven elements in this process, which are as follows:
Age interval (x to x+1) the symbol x represents the age of the individuals described by the life table. Each
age interval is one year except the last, which is open-ended

Number alive (lx) represents the number of individuals alive (at-risk) at age x. It is the size of the life
table population-at-risk at the beginning of the interval x. l0, the number alive at age x=0 is set as some
arbitrary number, say 100,000. l0 is called the radix.

Deaths (dx) represents the number of deaths between ages x and x + 1 (i.e., within this particular year).

3



Probability of death (qx) represents the conditional probability that a member of the life table cohort
who is alive at age x dies before age x + 1. In symbols,

Conditional probability of death qx = P [ death before age x+ 1 | alive at age x)] =
dx
lx

Probability of alive (px) represents the conditional probability that a member of the life table cohort who is
alive at age x is still alive at age x + 1. In symbols, px = 1− qx
Note: make sure you distinguish between the conditional survival probability px (conditional on a specific age)
and the unconditional survival probability Px. To calculate Px, we can use

life table probability of surviving beyond age x = Px

=
∏

(1− qi) =
∏

pi

=
l1
l0
· l2
l1
· l3
l2
· · · lx

lx−1

=
lx
l0

Years lived (Lx) represents cumulative time lived by the entire cohort between the ages x and x + 1.
Each individual alive at age x contributes to the total time lived during the next year: either one year if an
individual lives the entire year or the proportion of the year lived when the individual dies within the one-year
interval, usually taken as 1/2.

Lx =

persons︷ ︸︸ ︷
(lx − dx) (1)︸︷︷︸

year

+

year︷︸︸︷
āx dx︸︷︷︸

persons

Total time lived (Tx) represents the total time lived beyond age x by all individuals who are age x. In symbols,
Tx = Lx + Lx+1 + Lx+2 + · · ·

Expectation of life (ex) represents the mean number of additional years lived by those members of the
life table cohort who are age x. In symbols, ex = Tx

lx

crude mortality rate =
total deaths

total person-years
=

l0
T0

=
1

e0

3 Descriptive Methods for Survival Data

3.1 Unique & complete survival times

Unique means that all sampled survival times are different. Complete means that all survival times end in
an observed outcome such as death. See the following example: Consider the unique and complete survival
times of 10 (n = 10) hypothetical COVID-19 patients in the ICU: survival times (in days): 2, 72, 51, 60, 33,
27, 14, 24, 4, and 21. Unlike constructing a life table, ti − ti−1 6= 1, that is, the interval lengths vary and are
determined by observed values.
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Under the unique and complete assumption, we have

q̂i = P [ death at or before time ti | alive at ti−1] =
number of deaths

number at risk
=

1

n− i+ 1

p̂i = P [ alive after time ti | alive at ti−1] =
n− i

n− i+ 1

3.2 Kaplan-Meier estimator

Kaplan-Meier estimator the estimated probability of surviving beyond a specific time tk which is P̂k estimated
via

P̂k = p̂1 · p̂2 · · · p̂k

=
∏

p̂i =
∏ n− i

n− i+ 1

= 1− k

n
=
n− k
n

, i = 1, 2, . . . , k

is called the Kaplan-Meier estimate
Plot the estimated survival probability against time we get the Kaplan-Meier curve from the step function.
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Variance: the estimate of P̂k from complete data is a typical estimate of a binomial probability. The variance is
given by

Var
[
P̂k

]
= P̂k

(
1− P̂k

)
/n

Mean survival time 1) mean survival time = t̄ = 1
n

∑
ti, i = 1, 2, . . . , n 2) or based on the total area enclosed

by the estimated survival function

mean survival time = area = µ̂ =
∑

P̂i−1 (ti − ti−1)

Median survival time When an estimated survival probability P̂i does not exactly equal 0.5, an estimate of the
median value is the upper bound of the interval containing the survival probability P̂ = 0.5

3.3 Incomplete survival times

Assumption The following analysis takes care of the case when the censoring is non-informative, that is, the
reason that the time of death is not observed is entirely unrelated to the outcome under study.

Adjustments the adjustments made considering censoring is that number of individuals at risk in each interval
is # of people at risk at beginning - # of people censored.
Therefore, in each interval only two kinds of individuals enter into the calculation of the conditional survival
probability: (1) those who died (creating the endpoint of the interval) and (2) those who survived the entire
interval.
Greenwood’s variance The variance of the distribution of an estimated survival probability is calculated from
Greenwood’s variance.

V̂k = Var
[
P̂k

]
= P̂ 2

k

∑ q̂i
nip̂i

, i = 1, 2, . . . , k

Confidence interval The construction of CI needs special care, i.e, use transformation to construct a more
normally distributed variable

ŝk = log
[
− log

(
P̂k

)]
then we have

Var [ŝk] = Var
[
log
[
− log

(
P̂k

)]]
=

V̂k[
P̂k log

(
P̂k

)]2
then CI for ŝk is upper-bound

Ak = ŝk − 1.960
√

Var [ŝk]

and lower-bound
Bk = ŝk + 1.960

√
Var [ŝk]

then P̂k has CI [
e− exp(Bk), e− exp(Ak)

]
Variance of mean survival time define

Ak =
∑

area i =
∑

P̂i−1 (ti − ti−1) , i = k + 1, k + 2, . . . , d

6



note that A0 = µ̂ then we have

Var [Ak] =
∑ A2

k

nk (nk − 1)
, k = 1, 2, . . . , d

Variance of median survival time let ˆtm be the estimated median survival time. Then

Var
[
t̂m
]

=

[
tl − tu
P̂l − P̂u

]2

V̂m

where tl and tu are the lower and upper bound that ˆtm located and P̂l and P̂u are the corresponding survival
probability. V̂m represents the Greenwood estimated variance of the estimated value P̂m (e.g. if 27 is the
median survival time in the above table, then tl = 24, tu = 60)

3.4 Nelson-Aalen estimator

Cumulative hazard function cumulative hazard function is defined as

H(t) =

∫ t

0

h(u)du

and we have
d

dt
H(t) = h(t)

S(t) = exp[−H(t)]

then
Ĥ(t) = − log P̂k = − log

∏
p̂i = −

∑
log p̂i, i = 1, 2, . . . k

we have log p = log(1− q) ≈ −q thus

H̃(t) =
∑

q̂i =
∑ di

ni
, i = 1, 2, . . . k

the estimator of the variance of the Nelson-Aalen estimator is

V̂ar[H̃(t)] =
∑ di

n2
i

, i = 1, 2, . . . k

and it follows that the endpoints of the 95% confidence interval estimator are

H̃(t) ± 1.96

√
V̂ar[H̃(t)]

thus the Nelson-Aalen estimator of the survival function is

Ŝ∗(t) = e−H̃(t)

and the associated confidence interval is obtained by exponentiating the negative of the endpoints

exp{−H̃(t)± 1.96

√
V̂ar[H̃(t)]}

The Nelson-Aalen estimator of the survival function is always ≥ the Kaplan-Meier estimator

3.5 Comparison of Survival Functions

Log-rank test it begins with drawing a 2*2 table at each time interval (ti−1, ti], and the two compared groups
are referred to as risk factor present (F ) or absent (F ′)

7



our null assumption is that there is no difference in survival probability between the case and control groups.
Under this assumption

expected number of deaths when risk factor is present: Ai =
[
ai+ci
ni

]
(ai + bi)

expected number of deaths when risk factor is absent: Ci =
[
ai+ci
ni

]
(ci + di)

and the corresponding observed numbers are ai and ci , respectively.
in filling the tables, we simply remove the censoring observations at each time interval, just like what we did in the
survival table
the variance of the distribution of the ai -counts is estimated with the expression

Var [ai] = v̂i =
(ai + bi) (ai + ci) (ci + di) (bi + di)

n2
i (ni − 1)

when ai + ci = 1, then bi + di = ni − 1, i.e. no identical survival times occur, the expression for the same
variance estimate is

Var [ai] = V̂i =
(ai + bi) (ci + di)

n2
i

now we have

• the total number of death among individuals with the presence of risk factor, represented by
∑
ai

• the total number of death among individuals with the risk factor estimated as if the risk factor and
survival status were unrelated, represented by

∑
Ai

• the variance of the summary
∑
ai represented by

∑
V̂i

then a formal test statistic measuring the overall strength of the association is

X2 =

[∑
(ai −Ai)√

Var [
∑
ai]

]2

=
[
∑

(ai −Ai)]2

Var [
∑
ai]

=
[
∑
ai −

∑
Ai]

2∑
v̂i

the test statistic X2 then has an approximate chi-square distribution with 1 degree of freedom when ai and Ai
differ by chance alone.
Note: The application of a chi-square distribution is not strictly correct. The estimated variance of a sum (i.e.,
Var(

∑
ai)) is the sum of the estimated variances (

∑
Var(ai)) only when the values ai are uncorrelated. This

is not the case among the 2 × 2 log-rank tables. All but the first table contain participants from earlier tables,
introducing a table-to-table association. This lack of independence, however, has only a minor influence on
the accuracy of the summary chi-square test statistic.

3.5.1 log-rank test for more than two groups

H0 : S1(t) = S2(t) = · · · = SG(t) for all t

for more than two groups, the log-rank statistic has approximately a large sample chi-square distribution with
df = G-1, where G is the number of groups

3.5.2 comparison between different tests

Wilcoxon test the generalized Wilcoxon test uses weights equal to the number at risk, it puts relatively more
weight on differences between the survival functions at smaller values of time

log-rank test the log-rank test, because it uses weights equal to 1, places more emphasis than does the
generalized Wilcoxon test on differences between the functions at larger values of time. It is a crude test; no
measure of association is reported, only a p-value; the exposure can- not be continuous. That is, continuous
exposures need to be converted into categorical exposures.

Tarone-Ware test Tarone-Ware uses weights equal to the square root of the number of subjects at risk at
each survival time.

Peto-Prentice test Peto-Prentice suggested using a weight function that depends more explicitly on the observed
survival experience of the combined sample.
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4 Cox Proportional Hazards Regression

4.1 Cox PH model

Cox PH model
h(t,x,β) = h0(t) exp (x′β) = h0(t) exp (β1x1 + β2x2 + · · ·+ βpxp)

where

• h(t) is the hazard rate at time t

• h0(t) is the baseline hazard

• exp
(∑p

j=1 βjXj

)
is the exponentiated linear function of a set of p fixed explanatory variables

under the binary case
h(t, x, β) = h0(t)eβx

the hazard ratio is

HR(t, 1, 0) =
h0(t)eβ(1)

h0(t)eβ(0)
= eβ

Interpretation If the value of the coefficient is β = log 2 = 0.6931 > 0 then the female are dying at twice (i.e.
eβ = 2) the rate of males (if 1=female, 0=male)
Cumulative hazard function

H(t,x,β) =

∫ t

0

h(u,x,β)du =

∫ t

0

h0(u) exp (x′β) du

= exp (x′β)

∫ t

0

h0(u)du = exp (x′β)H0(t)

Survival function

S(t,x,β) = exp[−H(t,x,β)] = e− exp(x′β)H0(t) =
[
e−H0(t)

]exp(x′β)
= [S0(t)]

exp(x′β) = [S0(t)]
exp(β1x1+β2X2+···+βpXp)

4.2 Partial likelihood

Triplets (ti, xi, ci)

• ti is the length of time a subject was observed

• xi is the exposure variable whose value is determined at baseline and remains unchanged throughout
the follow-up of the subject

• ci indicator variable of censoring with 1=observed, 0=right censoring

then

• when ci = 1 we know that the survival time was exactly t . Thus, the contribution to the likelihood for
this triplet is the given by f(t, β, x)

• when ci = 0 we know that the survival time was at least t. Thus the contribution to the likelihood
function of this triplet is given by S(t, β, x)

Likelihood

I(β) =

n∏
i=1

[f (ti, β, xi)]
ci [S (ti, β, xi)]

1−ci

Log-likelihood

L(β) =

n∑
i=1

{ci log f (ti, β, xi) + (1− ci) logS (ti, β, xi)}

given that f(t, x, β) = h(t, x, β)S(t, x, β)

L(β) =

n∑
i=1

{
ci log h0 (ti) + βcixi + eβxi logS0 (ti)

}
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Partial likelihood

Ip(β) =

n∏
i=1

[
eβxi∑

j∈R(ti)
eβxj

]ci
where the summation in the denominator is over all subjects in the risk set at time ti and this expression
assumes that there are no tied times and it is modified to exclude terms when ci = 0, yielding

Ip(β) =

m∏
i=1

[
eβxi∑

j∈R(t(i)) e
βxj

]ci
the log partial likelihood is

Lp(β) =

m∑
i=1

βx(i) − log
∑

j∈R(t(i))

eβxj


Information

I(β) = −∂
2Lp(β)

∂β2

and variance
V̂ar[β̂] = I(β̂)−1

4.3 Assess the significance of the estimated coefficient

4.3.1 partial likelihood ratio test

The partial likelihood ratio test, denoted G, is calculated as twice the difference between the log partial
likelihood of the model containing the exposure variable and the log partial likelihood for the model not
containing the exposure. Specifically

G = 2
[
Lp(β̂)− Lp(0)

]
where Lp(0) = −

∑m
i=1 log ni. Then under H0 : β = 0, G ∼ χ2

df=1

4.3.2 Wald test

z =
β̂

ŜE(β̂)

Then under H0 : β = 0, z2 ∼ χ2
df=1

4.3.3 Score test

z∗ =

∂Lp
∂β√
I(β)

∣∣∣∣∣
β=0

Then under H0 : β = 0, z∗ ∼ N(0, 1)

4.4 Interpretation

These equations will be useful later.
g(t, x, β) = log [h0(t)] + βx

g(t, x = a, β)− g(t, x = b, β) = {log [h0(t)] + βa} − {log [h0(t)] + βb}
= (a− b)β

HR(t, x = a vs x = b, β) =
h(t, a, β)

h(t, b, β)

= exp[g(t, x = a, β)− g(t, x = b, β)]

= e(a−b)β
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4.4.1 Nominal exposure

The idea for interpretation is that the Cox model does not contain intercept term. This is the price you pay for
choosing the semiparametric proportional hazards model. The implication of this in practice is that you cannot,
from the regression output of a proportional hazards model, reconstruct group-specific hazard rates. Only hazard
ratios can be estimated. Thus to interpret we have to transfer the hazard rate to hazard ratio by

g(t, x = 1, β)− g(t, x = 0, β) = (1− 0)β = β

HR(t, x = 1 vs x = 0, β) = eβ

95% confidence interval for HR follows
exp[β̂ ± 1.96ŜE(β̂)]

then the interpretation of the HR is

1. the comparison group die at about HR times the rate of reference group, throughout the study period.
The confidence interval suggests that ratios as low as lower CI or as high as upper CI are consistent with
the observed data at the 95% level of confidence
or

2. the death rate among comparison group is (HR-1)*100 percent larger than among reference group
throughout the study period, and it could be as little as (lower CI-1)*100% smaller as much as (upper
CI-1)*100% percent larger with 95% confidence

More than two groups
If a nominal scale covariate has more than two levels, denoted in general by K , model the variable using a
collection of K-1 design (dummy or indicator) variables.

• Reference cell coding is the most frequent method of coding these design variables. With this method, you
choose one level of the variable to be the reference level, against which all other levels are compared.
The resulting hazard ratios compare the hazard rate of each group to that of the referent group.
To contrast to groups rather than the reference group we can do the following

g(t, four age groups, β) = log [h0(t)] + β1AGECAT1 + β2AGECAT2 + β3AGECAT3

g(t, age group 3,β)− g(t, age group 2,β)
= {log [h0(t)] + β1(0) + β2(0) + β3(1)} − {log [h0(t)] + β1(0) + β2(1) + β3(0)}
= β3 − β2

The estimator of the hazard ratio is

ĤR( age group 3vs2) = eβ̂3−β̂2

V̂ar
[
β̂3 − β̂2

]
= V̂ar

[
β̂2

]
+ V̂ar

[
β̂3

]
− 2Ĉov

(
β̂2, β̂3

)
• Deviation from means coding (effect coding) in effect coding, the comparison group is identified by the

symbol -1. E.g. if we have age group 0-3 indicated by AGECAT0-AGECAT3. By setting AGECAT0 as the
reference group, we have

AGECATi =


1, if age category is i
0, if age categrory is other than i and 0
−1, if age categroy is 0

The resulting estimated coefficient for an age group estimates the difference between the log hazard
of the group and the arithmetic mean of the log hazards of all groups. The exponentiated estimated
coefficient provides the ratio of the hazard rate of the particular group to the geometric mean of the
hazard rates of all groups.
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For example
The log odds of death for age group 1 is −0.4954− 0.7649(1) + 0.7422(0) + 1.3018(0) = −1.2603 = g1
The log odds of death for age group 2 is −0.4954− 0.7649(0) + 0.7422(1) + 1.3018(0) = 0.2468 = g2
The log odds of death for age group 3 is −0.4954− 0.7649(0) + 0.7422(0) + 1.3018(1) = 0.8064 = g3
The log odds of death for age group 0 is−0.4954−0.7649(−1)+0.7422(−1)+1.3018(−1) = −1.7745 = g0
the intercept coefficient is −0.4954 = (−1.2603 + 0.2468 + 0.8064− 1.7745)/4
exp(−0.4954) = exp((−1.2603 + 0.2468 + 0.8064− 1.7745)/4) = 4

√
g1 · g2 · g3 · g0

4.4.2 Continuous exposure

For continuous exposure variables, the estimated coefficient represents the rate of change of a function of the
dependent variable per-unit change in the explanatory variable. We must decide what a clinically meaningful
unit of change in the continuous exposure. If we want to get the estimate of hazard ratio comparing two
groups that differ in c times the default unit. We do the following

ĤR(c) = ecβ̂

with CI
exp[cβ̂ ± 1.96|c|ŜE(β̂)]

4.4.3 Multivariable models

Suppose that the primary risk factor, d , has two levels (coded 0 = absent and 1 = present)
crude model

g (t, d, θ1) = log [h0(t)] + dθ1

adjusted model by x
g(t, d, x,β) = log [h0(t)] + dβ1 + xβ2

The magnitude of the confounding by x is on the scale of the coefficients or difference in the log-hazard. The
measure of difference in the two coefficients is the percentage change

∆β̂% = 100

(
θ̂ − β̂
β̂

)

where θ̂:the estimator from the model that does not contain the potential confounder and β̂: the estimator
from the model that does include the potential confounder.

θ̂1 ≈ β̂1 + β̂2 (x̄1 − x̄0)

where x̄1 is the average value of x among subjects with d = 1, and x̄0 is the average value of x among subjects
with d = 0.
the crude estimator will be approximately equal to the adjusted estimator if the difference in the mean of x of
the two groups defined by d is 0 or if the coefficient for x is 0. The two estimators will differ if at least one of
the two is large or both are moderate in size.
interactive model

g(t, d, x, β) = ln [h0(t)] + β1d+ β2x+ β3xd

then
ĤR(t, d = 1 vs d = 0, x) = exp

(
β̂1 + β̂3x

)
ŜE
(
β̂1 + β̂3x

)
=

√
V̂ar

[
β̂1

]
+ x2V̂ar

[
β̂1

]
+ 2xĈov

(
β̂1, β̂3

)
thus CI is

exp
{(
β̂1 + β̂3x

)
± 1.96ŜE

(
β̂1 + β̂3x

)}
5 Model selection

5.1 Numerical problems that may occur in fitting the model

Complete separation occurs when there is a category or range of an explanatory variable with only one value
of the response. This ideal state of affairs is not desirable; variation in the response is necessary to estimate the
model parameters. Mathematically, the maximum likelihood estimate for the perfect prediction variable does
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not exist. The larger the coefficient for the perfect prediction variable, the larger the likelihood. In other words,
the coefficient for the perfect prediction variable should be as large as it can be, which would be infinity!
In this case, the model won’t converge. We shall be aware of the possibility of complete separation when the
estimation of the coefficients and standard errors are very large.
Solutions One approach to handling the problem of complete separation is to employ exact logistic regression,
but exact logistic regression is complex and may require prohibitive computational resources. Another option
is to use a Bayesian approach using penalized likelihood originally proposed by Firth (1993) and described
fully in this setting by Heinze (2002, 2006), which is called Firth’s penalized likelihood.
Monotone likelihood The table below reflects the problem of non-overlapping survival times, which can also
leads to model divergence. It may not produce warnings in SAS, but the estimations can be very large. Firth’s
correction can also be applied in this case.

Multicollinearity can cause model divergence or bias the estimation. The results of fitting a proportional
hazards model when the relationship between the two covariates is BMI2 = BMI + u, where u is the value of
a uniformly distributed random variable on the interval (0, 0.01). The correlation between the covariates is
effectively 1.0. Tables below shows how the multicollinearity bias the estimation. Variance inflation factor
(VIF) can be employed to detect multicollinearity.

5.2 Model selection

5.3 Stepwise selection

The stepwise selection process consists of a series of alternating forward selection and backward elimination
steps. The statistical test used as a criterion is most often the partial-likelihood ratio test. However, the
score test and Wald test are often used by software packages. SAS, for example, uses the score test. The
partial-likelihood ratio test has been shown to have the best statistical testing properties of the three and
should be used when there is a choice.

• Step0: Assume that there are p possible variables, denoted xj , j = 1, 2, . . . , p. Fitting the single variable
model p times. For each model, the significance of the variable is derived using the partial likelihood
ratio test by comparing with the null model (the model with no variables). The test statistics is

G(0)(j) = −2
[
L(0)(j)− L(0)

]
, j = 1, 2, . . . , p

The significance level of the test is

p(0)(j) = P
[
χ2(1) ≥ G(0)(j)

]
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The candidate for entry into the model at step 1 is the most significant variable and is denoted by xe1 ,
where

p(0) (e1) = min
j

[
p(0)(j)

]
For variable xe1 to be entered into the model, its p-value MUST be smaller than some prechosen criterion
for significance, denoted by pE , otherwise, the process stops.

• Step1: In this step, we fit p-1 two-variable models, which contain xe1 , and they are compared to the
model containing only xe1 . The test statistic is

G(1)(j) = −2
[
L(1)(j)− L (xe1)

]
, j = 1, 2, . . . , p, j 6= e1

The p-value is
p(1)(j) = P

[
χ2(1) ≥ G(1)(j)

]
then the variable selected as the candidate for entry at step 2 is xe2 where

p(1) (e2) = min
j 6=e1

[
p(1)(j)

]
. The p-value for the selected variable also needs to satisfy p(1) (e2) < pE , otherwise, the process stops.

• Step2: this step begins with both xe1 and xe2 in the model. During this step, two different evaluations
occur. The step begins with a backward elimination check for the continued contribution of xe1 . That
is, does xe1 still contribute to the model after xe2 has been added? A different significance criterion for
this check may be used, denoted pR. Choose this value such that pR > pE to eliminate the possibility of
entering and removing the same variable in an endless number of successive steps.

• Step3, if reached, is similar to step 2 in that the elimination process determines whether all variables
entered into the model at earlier steps are still significant. The selection process then followed is identical
to the selection part of earlier steps. This procedure is followed until the last step, step S.

• StepS: at this step, one of the two things happens: (1) all the variables are in the model and none may
be removed, or (2) each variable not in the model has p(S)(j) > pE

Examine the variables picked by stepwise selection Research in linear regression by Bendel and Afifi (1977)
and in discriminant analysis by Co-stanza and Afifi (1979) indicates that use of pE = 0.05 excludes too many
important variables and one should choose a level of significance of 15%. In many applications, it may make
sense to use 25%-50% to allow more variables to enter than will ultimately be used and then narrow the field
of selected variables using p-value<0.15 to obtain a multivariable model for further analysis.
An unavoidable problem with any stepwise selection procedure is the potential for the inclusion of noise
variables and the exclusion of important variables. One must always examine the variables selected and
excluded for basic scientific plausibility.

5.3.1 Forward selection and backward elimination

Forward selection takes only the forward steps in the stepwise selection mentioned above, and thus once a
variable is entered in the model, it is never removed from the model.
Backward elimination takes only the elimination steps in the stepwise selection mentioned above, and thus
once a variable is removed from the model, it remains excluded.

5.4 Best-subsets Selection

In summary, best-subsets selection fits all the possible subset of the covariates to the model and select the best
one based on certain criterion. There are a number of available criteria, such as R-Square, adjusted R-Square,
Mallow’s Cp , the PRESS statistic. Given the criterion, the software screens all models containing q variables
and reports the variables in the best, say 5, models for q = 1, 2, . . . , p, where p denotes the total number of
variables. Of course, the larger the number of candidate variables, the larger the number of possible regression
models. For example, if there are 11 candidate variables, then there are 211 = 2048 possible regression models.
For example, we can use the score test, the larger the score is, the better the model. Like R-Square, the score
test statistic tends to increase with the number of covariates in the model. The most frequently used criterion
to compare normal errors linear regression models containing different numbers of variables is Mallow’s C.
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Good models are those with small values of Mallow’s C. In the context of the proportional hazards model
Mallow’s C is defined as

C = Wq + (p− 2q)

where p is the number of variables under consideration and q denotes the number of variables not included in
the subset model. The quantity Wq is the value of the multivariable Wald statistic testing that the coefficients
for the q variables are simultaneously equal to 0 and is obtained from a fit of the model containing all p
variables. The score test is used to approximate the value of Wq. Let the score test for the model containing all
p variables be denoted Sp and the score test for the model containing a particular set of k (= p-q) variables be
denoted Sk. The value of the score test for the exclusion of the q variables from the full p-variable model is
approximately Sq = Sp − Sk. Because the Wald and score tests are asymptotically equivalent, this suggests
that an approximation to Mallow’s C for a fitted model containing p-q covariates is

C = Sq + (p− 2q)

Stepwise vs best-subsets selection: With stepwise selection, you are able to examine only progressively
larger models and not ones with the same number of variables. With best-subsets selection, you are able to
examine different models with the same number of variables. Note that both approaches, using different
criteria, recommended the same set of variables. Complete agreement in variable selection may not always
occur.

5.5 Purposeful Selection

• Fit a multivariable model containing all variables significant in the univariable analysis at the 20-25
percent level, as well as any other variables not selected with this criterion but judged to be of clinical
importance. (add)

• Use the p-values from the Wald tests of the individual coefficients to identify explanatory variables that
might be deleted from the model. Some caution should be taken at this point not to reduce the size of the
model by deleting too many seemingly non-significant variables at one time. The p-value of the partial
likelihood ratio test should confirm that the deleted explanatory variable is not significant. (delete)

• Assess whether removal of the explanatory variable has produced an important change in the coefficients
of the variables remaining in the model. In general, use a value of about 20% as an indicator of an
important change in a coefficient. If the variable excluded is an important confounder, it should be
added back into the model. This process continues until no explanatory variables can be deleted from
the model. (assess)

• Add to the model, one at a time, all variables excluded from the initial multivariable model to confirm
that they are neither statistically significant nor an important confounder. It is possible that a variable
that had a univariable test p-value which exceeded 0.8 became highly significant when added to the
multivariable model obtained at step 3. Refer to the model at the conclusion of this step as the preliminary
main effects model.

• Examine the scale of the continuous covariates in the preliminary main effects model. A number of
techniques are available, all of which are designed to determine whether the data support the hypothesis
that the effect of the explanatory variable is linear in the log hazard and, if not, what transformation of
the variable is linear in the log hazard. Refer to the model at the end of step 5 as the main effects model.
(check assumption)

• Determine whether interactions are needed in the model. Special considerations may dictate that a
particular interaction term or terms be included in the model, regardless of the statistical significance
of the coefficient(s). However, in most settings, there will be insufficient scientific theory to justify
automatic inclusion of interactions. All interactions significant at the 5%, perhaps as low as 1% in some
settings, level are added jointly to the main effects model. Wald statistic p-values are used as a guide
to selecting interactions that may be eliminated from the model, but significance should be checked
by the partial likelihood ratio test. Often when an interaction term enters a model, the coefficient
of one of its component main effects may have a non-significant Wald statistic. All main effects of
significant interactions should remain in the model because estimates of effect require both main effect
and interaction coefficients. Refer to the model at the conclusion of step 6 as the preliminary model. It
does not become the final model until it is thoroughly evaluated. (add interaction)

• Evaluate the model: check for adherence to key model assumptions using casewise diagnostic statistics
to check for influential observations and testing for overall goodness-of-fit. This step is mandatory for
any model building strategy, not just purposeful selection. (check assumptions)
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6 Model Assessment

Like model development, model assessment involves a number of steps.

• examine and test the proportional hazards assumption

• evaluating subject-specific diagnostic statistics that measure leverage and influence on the fit of the
proportional hazards model

• compute summary measures of goodness-of-fit

6.1 Residuals

Unfortunately, when fitting a proportional hazards model to censored survival data, there is no obvious analog
to the usual ‘observed minus predicted’ residual used with other regression models. SAS and most software
packages provide access to these residuals:

• Schoenfeld and scaled Schoenfeld residuals: calculated for a given subject with respect to an explana-
tory variable. It is the difference between the actual value of an explanatory variable for a subject and
the expected value of the explanatory variable in the risk set.

• martingale residuals: calculated for a subject at time t. It is the difference between actual and expected
number of events to time t.

• score and scaled score residuals: calculated for a subject with respect to an explanatory variable. It is
a weighted difference between the value of the explanatory variable for a subject and the average value
of the explanatory variable in the risk set.

6.1.1 Schoenfeld residuals

[Schoenfeld residuals are used to assess the proportional hazards assumption]
Assume that there are p explanatory variables and that the n independent observations of time, explanatory
variables and censoring indicator are denoted by the triplet (ti, xi, ci), i = 1, 2, · · · , n, where ci = 1 for
uncensored observations and ci = 0 otherwise.
Schoenfeld residuals are based on the individual contributions to the derivative of the log partial likelihood.
Recall that

∂Lp(β)

∂βk
=

n∑
i=1

ci

[
xik −

∑
j∈R(ti)

xjke
x′
jβ∑

j∈R(tj)
ex

′
jβ

]
=

n∑
i=1

ci [xik − x̄wik]

is the derivative for the kth covariate, where x̄wik =
∑
j∈R(ti)

xjke
x′
jβ/

∑
j∈R(ti)

ex
′
jβ. The estimator of the

Schoenfeld residual for the ith subject on the kth covariate is obtained by substituting the partial likelihood
estimator of the coefficient, β, and is

r̂ik = ci
[
xik − ̂̄xwik]

where ̂̄xwik =
∑
j∈R(tj)

xjke
x′
j β̂/

∑
j∈R(ti)

ex
′
j β̂ is the estimator of the risk set conditional mean of the explana-

tory variable.
Schoenfeld residuals are based on the individual contributions to the derivative of the log partial likelihood.
Because the partial likelihood estimator of the coefficient, β̂, is the solution to the equations obtained by
setting the partial derivatives equal to 0, the sum of the Schoenfeld residuals is 0. The Schoenfeld residuals are
equal to 0 for all censored subjects and thus contain no information about the fit of the model.
Scaled Schoenfeld residuals Denote the vector of p Schoenfeld residuals for the ith subject as

r̂i = (r̂i1, r̂i2, . . . , r̂ip)

Let the estimator of the p × p covariance matrix of the vector of residuals for the ith subject be denoted by
V̂ar [r̂i], and the estimator is missing if ci = 0. The vector of scaled Schoenfeld residuals is the product of the
inverse of the covariance matrix times the vector of residuals, namely

r̂∗i =
(

V̂ar [r̂i]
)−1

r̂i

, where V̂ar [r̂i]kk =
∑
j∈R(ti)

ŵij
(
xjk − ̂̄xwik)2 and V̂ar [r̂i]kl =

∑
j∈R(ti)

ŵij
(
xjk − ̂̄xwik) (xjl − ̂̄xwi), with

ŵij = e
x′
j β̂∑

l∈R(ti)
ex

′
1,β̂

. Given that
(

V̂ar [r̂i]
)−1

≈ mV̂ar[β̂], where m is the observed number of uncensored

survival times. We have
r̂∗i =

(
V̂ar [r̂i]

)−1

r̂i ≈ mV̂ar[β̂]r̂i

16



6.1.2 Martingale residuals (Cox-Snell residual)

[Cumulative martingale residuals can be used to assess PH assumption, and plot likelihood displacement
against martingale residual can be used to find influential point]
Counting process representation
The counting process representation of the proportional hazards model is a linear-like model that counts
whether the event occurs (e.g., the subject dies) at time t . The basic model is

N(t) = Λ(t,x,β) +M(t)

where

• N(t) is the count that represents the observed part of the model and is defined to be equal to 0 until
the exact time the event occurs and is equal to 1 thereafter. If the subject does not die during the entire
follow-up, then N(t) = 0

• Λ(t,x,β) = H(t,x,β) = H0(t)ex
′β. At the end of follow-up you will find the maximum value for the

systematic component, regardless of whether the event occurred.

• M(t) = N(t)−Λ(t,x,β) is a martingale and plays the role of the error component. Under correct model,
E (M(t)) = 0. In theory, it has a value at each time t , but the most useful choice of time at which to

compute the residual is the end of follow-up. Given that N(ti) = ci, M̂i = ci − Ĥ
(
ti,x, β̂

)
6.1.3 Score residual

[Score residual is used to measure the leverage and influence, respectively, of particular subjects]
∂Lp(β)
∂βk

=
∑n
i=1 Lik, the score residual is

Lik =

n∑
j=1

(
xik − x̄wjk

)
dMi (tj)

where dMi (tj) = dNi (tj)− Yi (tj) e
x′
iβh0 (tj),

and Yi (tj) =

{
1 if ti ≥ tj
0 if ti < tj

, dNi(ti) =

{
1 at the actual observed survival time
0 otherwise

An expanded computational formula yields the estimator

L̂ik = ci (xik − x̂wik)− xikĤ
(
ti,x, β̂

)
+ ex

′
iβ̂
∑
tj≤ti

̂̄xwjk cj∑
l∈Rj e

x′
lβ̂

Scaled score residual
let L̂ik =

(
L̂i1, L̂i2, . . . , L̂ip

)
then scaled score residual is

L̂∗
′

i = V̂ar[β̂]L̂i

Note:

• A positive Schoenfeld residual indicates that the value of the explanatory variable is higher than expected
at that death time.

• If the exposure is binary with values 1 or 0, then the Schoenfeld residuals for this variable will be
between –1 and 1.

• The range of martingale residuals is from −∞ to 1.

• If the martingale residual for a subject is close to 1, this indicates the subject died too soon. On the other
hand, if the martingale residual for a subject is negative and its absolute value is large, this indicates the
subject lived too long.

• The mean of the martingale residuals is 0.

• A plot of the martingale residuals vs continuous explanatory variables may suggest continuous variables
that are not properly fit.

• Statistics such as DFBETA and LD are typically used for smaller data sets because the influence of any
single observation diminishes as the sample size increases.
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6.2 Proportional Hazards Assumption

constant hazards, constant hazard ratio variable hazards, constant hazard ratio

6.2.1 log-log plot

Model with single predictor

S(t,x,β)) = [S0(t)]
exp(x′β)

log(− logS(t,x,β))) = x′β + log (− logS0(t))

Now consider comparing two groups of people with different values of x , denoted by x? and x. If you subtract
the log-log survival function for the second group from that for the first group you get

log (− logS (t, x∗, β))− log(− logS(t, x, β))

= [βx∗ + log (− logS0(t))]− [βx+ log (− logS0(t))]

=βx∗ − βx
=β (x∗ − x) independent of time

parallel curve indicates PH assumption satisfied
with only one covariate, we divide the data by the covariate and fit the KM model, in this way, we get empirical
plots of log log survival curves, which means unadjusted curves.
Note: we need to categorize continuous variables for log-log plots. Categorization into two groups may give a
different graphical picture from a categorization into three groups. The recommendation is that a small number
of categories be chosen, that the choice of categories be as meaningful as possible and provide reasonable
balance of category size.
Model with several predictors
To evaluate the proportional hazards assumption for several variables simultaneously. The strategy is to assess
the assumption for one predictor adjusted for the other predictors that are assumed to satisfy the proportional
hazards assumption.

1. stratify the data by the levels of the target covarite

2. fit a proportional hazards model containing the explanatory variable that assumed to satisfy the PH
assumption in each stratum, and then

3. obtain adjusted survival probabilities using the mean of the explanatory in each stratum in the estimated
survival curve formula for each stratum.
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6.2.2 Using Schoenfeld residuals

Suppose subject i has an event at time t. Then her Schoenfeld residual for Var is her observed value of Var
minus a weighted average of the Var for the other subjects still at risk at time t. The weights are each subject’s
hazard. The idea behind the statistical test is that if the proportional hazards assumption holds for a particular
variable, then the Schoenfeld residuals for that covariate will not be related to survival time.

1. Run a Cox proportional hazards model and obtain Schoenfeld residuals for each explanatory variable

2. Create a variable that ranks the order of failures. The subject who has the earliest event gets a value of 1,
the next gets a value of 2, and so on

3. Test the correlation between the variables created in the first and second steps. The null hypothesis is
that the correlation between the Schoenfeld residuals and ranked failure time is 0. Thus, a nonzero slope
is an indication of a violation of the proportional hazards assumption.

6.2.3 Cumulative martingale residuals

The solid lines represent the observed cumulative residuals, while dotted lines represent 20 simulated sets of
residuals expected under the null hypothesis that the proportional hazards assumption is satisfied. A solid
line that falls significantly outside the boundaries set up collectively by the dotted lines suggest that the
proportional hazards assumption is not satisfied.

6.3 Influential & Poorly-fit Observations

6.3.1 Leverage

Leverage is a diagnostic statistic that measures how unusual the values of the explanatory variables are for
an individual. In linear and logistic regression, leverage is calculated as the distance of the value of the
explanatory variable for a subject to the overall mean of the explanatory variables. Leverage is not quite so
easily defined nor does it have the same nice properties in proportional hazards regression.

6.3.2 Score residuals

[useful for identifying subjects with high leverage or who influence the value of a single coefficient.]
The score residual for the ith subject on the kth covariate is a weighted average of the distance of the value,
xik , to the risk set means, x̄wjk, where the weights are the change in the martingale residual, dMi(tj). The
net effect is that, for continuous explanatory variables, the score residuals have the linear regression leverage
property that the farther the value is from the mean, the larger the score residual is.

19



Scaled score residuals The purpose of Cook’s distance is to obtain an easily computed statistic that approxi-
mates the change in the value of the estimated coefficients if a subject is deleted from the data. This is denoted
as ∆β̂ki = β̂k − β̂k(−i) ≈ (V̂ar[β̂]L̂i)k = scale score residual, where k means the k-th subscript. Then we can
plot the scaled score residual against the value of the covariate, like what we did in the plot above.

6.3.3 Likelihood displacement statistics

[provides useful information for assessing influence on the vector of coefficients.]
The overall measure of influence is(

β̂ − β̂(−i)

)′
(V̂ar[β̂])−1

(
β̂ − β̂(−i)

)
≈ Idi = L̂′i(V̂ar[β̂])L̂i ≈ 2

[
Lp(β̂)− Lp

(
β̂(−i)

)]
This statistic has been shown by Pettitt and Bin Daud (1989) to be an approximation to the amount of change
in the log partial likelihood when the i th subject is deleted. In this context, the statistic is called the likelihood
displacement statistic. It makes the most sense to plot ldi versus the martingale residuals.

After identify explicitly the subjects with the extreme values, refit the model deleting these subjects, and
calculate the change in the individual coefficients. The final decision will depend on the observed percentage
change in the coefficients that results from deleting the subject’s data and, more importantly, the clinical
plausibility of that subject’s data.

6.4 Overall goodness-of-fit

Quintile Point Count Observed Expected z p
1 1.37 100 6 8.17 −0.76 0.448
2 2.17 100 15 22.47 −1.58 0.115
3 2.80 100 41 37.55 0.56 0.574
4 3.52 100 66 53.39 1.73 0.084
5 5.66 99 86 92.41 −0.67 0.505
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The table above presents the observed and estimated expected numbers of events, the z -score and two-tailed
p-value within each quintile of risk. The results in the observed and expected columns are obtained as follows:

1. Following the fit of the model, save the martingale residuals and risk score.

2. Sort the risk score and create a grouping variable with values 1 5 based on the quintiles of the risk score.

3. Calculate the observed number of events in each quintile by summing the censoring variable over the
subjects in each quintile.

4. Create the model cumulative hazard by subtracting the martingale residual from the follow up status
(censoring) variable.

5. Calculate the expected number of events in each quintile by summing the cumulative hazard over the
subjects in each quintile.

7 Extensions of the Cox model

7.1 Stratified Cox Model

7.1.1 No-interaction assumption

The population under study can consist of a number of subpopulations, each of which has its own baseline
hazard function. The stratified Cox model is a modification of the Cox proportional (PH) model that allows for
stratification of a predictor that does not satisfy the proportional hazards assumption. Explanatory variables
that are assumed to satisfy the proportional hazards assumption are included in the model, whereas the
variable being stratified is not included. Under the stratified model, the hazard function in the s-th stratum is
expressed as

hs(t,x,β) = hs0(t)ex
′β

where there are s = 1, 2, · · · , S strata.
Partial likelihood The contribution to the partial likelihood for the s-th stratum is

Isp(β) =

ns∏
i=1

[
ex

′
siβ∑

j∈R(tsi)
ex

′
sjβ

]csi
, ISp(β) =

s∏
s=1

Isp(β)

where ns = the number of obs in the s-th stratum, tsi = i-th observed value of time in the s-th stratum, csi =
value of the 0/1 censoring variable associated with tsi,R(tsi) = the subject in the stratum s in the risk set at time tsi,
Xst = vector of p explanatory variables, and ISp = full likelihood.
Note:

1. Watch for small numbers within any stratum. Small numbers within any stratum will result in an
estimated baseline survival function with greater variance than the estimates from strata with more data.

2. Since the strata variable is not included in the model, it is not possible to obtain HR for it.

No-interaction assumption: For different strata, the model provides the same coefficients for β.
Multiple variables violate the PH assumption: Assume that k variables do not satisfy the proportional
hazards assumption Z1, Z2, . . . , Zk. To perform the stratified Cox procedure, define a new variable, call it Z?,
from the Z’s by forming combinations of categories of Z’s.
An example is as follows: Stratify on 2 variables: cell type and performance status. Cell type has 4 levels:
large, adeno, small, squamous. The range of performance status is between 0 and 100. Create a new binary

variable PSBIN, defined as PSBIN =

{
1 if performance ≥ 60
0 otherwise , Z? has 4*2=8 categories and thus create

7 dummy variables when writing down the model.

Z∗1 = large cell
Z∗2 = adeno cell
Z∗3 = small cell
Z∗4 = PSbin
Squamous cell is the
reference category for cell
type.

,

Z∗5 = Z∗1 × Z∗4
Z∗6 = Z∗2 × Z∗4
Z∗7 = Z∗3 × Z∗4

PSBIN =0 is the reference category for PSBIN.
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hs(t,X) =hs0(t) exp [β1RX + β2AGE + β11RX× Z∗1 + β12RX× Z∗2 + β13RX× Z∗3 +

β14RX× Z∗4 + β15RX× Z∗5 + β16RX× Z∗6 + β17RX× Z∗7 +

β21AGE× Z∗1 + β22AGE× Z∗2 + β23AGE× Z∗3 + β24AGE× Z∗4 +

β25AGE× Z∗5 + β26AGE× Z∗6 + β27AGE× Z∗7 ]

Model Term Parameter(s) Estimated
RX β1

AGE β2

RX∗CELLTYPE β11, β12, β13

RX?PSBIN β14

RX?CELLTYPE?PSBIN β15, β16, β17

AGE∗CELLTYPE β21, β22, β23

AGE?PSBIN β24

AGE?CELLTYPE?PSBIN β25, β26, β27

stratum 1: Z∗1 = Z∗2 = Z∗3 = Z∗4 = 0. This stratum is defined by the combination of squamous cell type and a
binary performance status value of 0. In this case, all the product terms are equal to 0, and the regression
model contains only the main effect terms RX and AGE. h1(t,X) = h10(t) exp [β1RX + β2AGE]

...

stratum 6:Z∗1 = 1, Z∗2 = Z∗3 = 0, Z∗4 = 1,
h6(t,X) =h60(t) exp [β1RX + β2AGE + β11RX + β14RX + β15RX + β21AGE+

β24AGE + β25AGE]
.

There are in total 8 strata.

7.1.2 Interaction model

No-Interaction model: hs(t,X) = hs0(t) exp [β1RX + β2 logWBC] , s = 1, 2
Interaction model: hs(t,X) = hs0(t) exp [β1sRX + β2s logWBC] , s = 1, 2

Note that each variable in the interaction model has a coefficient for females that is different from males, as
indicated by the subscript s in βs1 and βs2.
Interaction model can be written in the following two ways

Interaction model A: hs(t,X) = hs0(t) exp [β1sRX + β2s log WBC] , s = 1, 2
Interaction model B: hs0(t) exp [β∗1RX + β∗2 logWBC + β∗3RX× SEX + β∗4 log WBC× SEX] , s = 1, 2

Note the SEX main effect is noticeably missing. We can perform partial LR test to decide whether to include
interaction term in the model.
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7.2 Extended Cox Model

There may be situations where one or more of the variables are measured during the period of follow up and
their values change. Note: 1. one should give serious consideration to the nature of any time-varying variable
before including it in the model. The value of any time-varying variable must depend only on study time, not
on calendar time; 2. another concern is the potential to overfit a model when using time-varying variables.
There are two types of time-varying variables

• internal time-varying variable is one whose value is subject-specific and requires that the subject be
under periodic observation

• external time-varying variable is one whose value at a particular time does not require subjects to be
under direct observation. Typically, these covariates are study or environmental factors that apply to all
subjects under observation. Eg: subject’s age; time itself.

However, neither AGE nor analysis TIME were modeled as a time-varying covariate in previous chapters
because AGE and analysis TIME advance in parallel if linear functions of AGE or analysis TIME are considered.
If you were to include AGE as a time-varying covariate, the estimate of its effect would not change because
any effects relating to the advancement of AGE would be absorbed into the baseline hazard function.
The form of the extended Cox model can be expressed as

h(t,x(t),β) = h0(t) exp [x′(t)β]

and the generalized partial likelihood is

Ip(β) =

n∏
i=1

 ex
′
i(t(i))β∑

l∈R(t(i)) e
x′
((t(l))β

ci

A special form of the extend model is

h(t,x(t),β) = h0(t) exp [x′(t)β] = h0(t) exp

[
p∑
k=1

βkxk +

p∑
k=1

δkxkgk(t)

]

with different choice of gk(t)

• Choice 1: gk(t) = 0. This is another way of stating the original proportional hazards model.

• Choice 2: gk(t) = t. Then we get h(t,x(t),β) = h0(t) exp [
∑p
k=1 βkxk +

∑p
k=1 δk (t · xk)].

• Choice 3: gk(t) =

{
t for k = L
0 for other k . This allows you to focus on a particular time-varying variable,

XL.

• Choice 4: gk(t) = log t. Then h(t,x(t),β) = h0(t) exp [
∑p
k=1 βkxk +

∑p
k=1 δk(log t)xk]

• Choice 5? (covered in more detail below): Let gk(t) be a heaviside function of the form gk(t) ={
1 if t ≥ t0
0 if t < t0

By comparing with the time-invariant model h(t,x,β) = h0(t) exp [x′β] = h0(t) exp [
∑p
k=1 βkxk] using LR test,

we can test the PH assumption of the variables. The null hypothesis is H0 : δ1 = δ2 = · · · = δp = 0
Note:

• An important assumption is that the time-varying covariate effect, as measured by its coefficient, does
not depend on time.

• In most settings where time-varying variables are included, the model will also contain time-invariant
variables. For example, h(t,x(t),β) = h0(t) exp [β1x1(t) + β2x2]

• A serious bias can occur when you include a time-varying variable in the model, and the effect of a
treatment on the outcome is mediated by this time-varying variable.
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7.2.1 Heaviside function

• single heaviside function:

h(t,x(t)) = h0(t) exp[βE + δEg(t)], where g(t) =

{
1 if t ≥ t0
0 if t < t0

then HR =

{
eβ+δ t ≥ t0
eβ t < t0

• two heaviside functions:

h(t,x(t)) = h0(t) exp [δ1Eg1(t) + δ2Eg2(t)] , where g1(t) =

{
1 if t ≥ t0
0 if t < t0

g2(t) =

{
0 if t ≥ t0
1 if t < t0

then HR =

{
eδ1 t ≥ t0
eδ2 t < t0

Note:

1. The two heaviside model does not contain a main effect term for exposure

2. The single heaviside model allows you to test whether the two HRs, HR = eβ+δ and HR = eβ , are
the same, but it does not directly give you a p-value or a confidence interval for the hazard ratio
when t ≥ t0.

3. The two heaviside model does not allow you to test whether the two HRs are the same, but it does
give you a p-value and a confidence interval for the hazard ratio when t < t0 or when t ≥ t0.

• Multiple heaviside functions:

h(t,x(t)) = h0(t) exp [δ1Eg1(t) + δ2Eg2(t) + δ3Eg3(t) + δ4Eg4(t)]

where
g1(t) =

{
1 if 0 ≤ t < 0.5 year
0 otherwise g3(t)

{
1 if 1.0 year ≤ t < 1.5 years
0 otherwise

g2(t) =

{
1 if 0.5 year ≤ t < 1.0 year
0 otherwise g4(t) =

{
1 if t ≥ 1.5 years
0 otherwise

then

Time Interval Hazard Ratio
1 0 ≤ t < 0.5 HR1 = eδ1

2 0.5 ≤ t < 1.0 HR2 = eδ2

3 1.0 ≤ t < 1.5 HR3 = eδ3

4 t ≥ 1.5 HR4 = eδ4

Summary: If we wish to separate the data into N separate time intervals, and for each interval, you wish to
obtain a different HR estimate. You can obtain N different hazard ratios using

1. an extended Cox model containing a main effect of exposure and N-1 heaviside functions in the model as
products with exposure, or

2. an extended Cox model containing no main effect exposure term, but with product terms involving
exposure with N heaviside functions

3. there are actually other approaches, and let’s illustrate it in the following example.

Example: if the CLINIC variable does not satisfy the PH assumption then we can do

1. One heaviside function:

h(t,x(t)) = h0(t) exp [β1 CLINIC-NEW + β2 PRISON + β3 DOSE + δ CLINIC-NEW g(t)]

where g(t) =

{
1 if t ≥ 365 days
0 if t < 365 days and CLINIC-NEW =

{
1 if clinic 1
0 if clinic 2

2. Two heaviside functions:

h(t,x(t)) = h0(t) exp [β2 PRISON + β3 DOSE + δ1 CLINIC-NEW g1(t) + δ2 CLINIC-NEW g2(t)]

where g1(t) =

{
1 if t ≥ 365 days
0 if t < 365 days g2(t) =

{
0 if t ≥ 365 days
1 if t < 365 days and CLINIC-NEW =

{
1 if clinic 1
0 if clinic 2
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3. Two heaviside functions:

h(t,x(t)) = h0(t) exp [β2 PRISON + β3 DOSE + δ1g1(t) + δ2g2(t)]

where g1(t) =

{
CLINIC-NEW t ≥ 365 days

0 t < 365 days g2(t) =

{
0 t ≥ 365 days
CLINIC-NEW t < 365 days , and

CLINIC-NEW =

{
1 if clinic 1
0 if clinic 2

4. Time itself:

h(t,x(t)) = h0(t) exp [β1 CLINIC-NEW + β2 PRISON + β3 DOSE + δ( CLINIC-NEW · t)]

with this model, we are able to estimate the effect of CLINIC-NEW on survival time, and thus HR, for
any specified t.

HRClinic 1 vs Clinic 2 =
h0(t) exp [β1(1) + β2 PRISON + β3 DOSE + (δ)(1)(t)]

h0(t) exp [β1(0) + β2 PRISON + β3 DOSE + (δ)(0)(t)]

= exp [β1 + δt]

8 Appendix

• censoring vs truncation
The biggest difference between censoring and truncation is that when individuals are censored, they
are included in the data set, even as their survival time is not completely known and when a data set
is truncated, certain individuals are excluded in the analysis. Notice that while we refer to censored
individuals we don’t refer to truncated individuals. We say the data set is truncated, which is due to a
selection process that may be inherent in the study design.

• Suppose S(t) is the survival function for rats with total number of rats=N . Then
N
∫ 45

30
S(t)dt, is the total survival time for all rats at risk during the interval 30 and 45 days

N(45− 30)S(45), is the time at risk between 30 and 45 days among rats that remain tumor-free during
this entire interval of time
N
∫ 45

30
S(t)dt−N(45− 30)S(45), is the time at risk between 30 and 45 days among rats that develop

tumor during this interval of time

• Consider the following model, hs(t,X) = hs0(t) exp (β1RX), where s = 1 for diabetics, s = 2 for
nondiabetics, RX = 1 if receiving treatment, RX = 0 if receiving placebo.

1. hazard rate for diabetics receiving treatment: h10(t)eβ1

2. hazard ratio comparing diabetics receiving treatment to diabetics receiving placebo: h10(t)eβ1(1)

h10(t)eβ1(0) =

eβ1

3. hazard rate for non-diabetics receiving placebo: h20(t)eβ1(0) = h20(t)

4. hazard ratio comparing a non-diabetic receiving treatment to a non-diabetic receiving placebo:
h20(t)eβ1(1)

h20(t)eβ1(0) = eβ1

• In a certain prospective cohort study, the outcome is time to all-cause death. The exposure is (RX): 1 for
treated and 0 for untreated. Researchers wish to take into account the following variables: AGE (which
is continuous), FEMALE (1 for females, 0 for males), RACE which has three levels: black, white and
others, and DIABETES (1 for yes, 0 for no). Race is coded as two dummy variables, WHITE (which is 1
for white, 0 otherwise) and OTHERS (which is 1 for nonblack and nonwhite, 0 otherwise). AGE does
not satisfy the proportional hazards assumption, and researchers create three AGE categories. Consider
the following stratified no-interaction Cox model:

hs(t,X) =hs0(t) exp [β1RX + β2FEMALE + β3 WHITE + β4OTHERS + β5 DIABETES +

β12(RX)( FEMALE ) + β13(RX)(WHITE) + β14(RX)( OTHERS )]

where where s = 0, 1, 2 represents the three AGE categories. Then
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• Statistics that examine the influence of deleting an observation when performing linear regression:
difference in fits, cook’s distance, deleted residual (studentized residuals are deleted residuals that are
standardized)
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