Contents

1 Foundation 1
1.1 Matrix algebra 1
1.2 Matrix decomposition 4
2 Linear regression 5
2.1 Geometric approach 5
2.2 Algebraic approach 5
2.2.1 When X is full rank 5
2.2.2 When X is not full rank 5
2.3 Projection matrix P 6
2.3.1 When X is full rank 6
2.3.2 When X is not full rank 6
2.4 Residual Sums of Squares (RSS) 6
2.5 PROPERTIES OF LEAST SQUARES ESTIMATES 7
2.5.1 Best Linear Unbiased Estimator, BLUE 7
2.5.2 Unbiased estimation of σ^{2} 7
3 Linear regression with distribution assumption 8
3.1 MLE 8
3.1.1 review on MLE properties 9
3.1.2 Orthogonal columns in the regression matrix 9
3.2 Estimation with linear constrain 9
3.3 Identifiability 11
3.4 Estimability 11
4 Generalized least square 12
5 Hypothesis Testing 13
5.1 Likelihood ratio test 13
5.2 F test 14
6 Some comments about ANOVA 15

1 Foundation

1.1 Matrix algebra

Vectors dependency definition

A set of vectors $D=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is called linearly dependent if there is a set of scalar $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ not all zero such that

$$
\sum_{i=1}^{r} \alpha_{i} x_{i}=0
$$

Conversely, if $\sum_{i=1}^{r} \alpha_{i} x_{i}=0 \Rightarrow \alpha_{i}=0, i=0,1, \ldots, r$, then $D=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ are linearly independent.

Column space

Suppose A is an n*p matrix. Then each column of A is a vector in \mathbb{R}^{n}. We can write $A=\left(x_{1}, \ldots, x_{n}\right)$, where each $x_{i} \in \mathbb{R}^{n}, i=1, \ldots, p$. The space spanned by the columns of A is called the column space of A, written $C(A)$. That is $S(A)=C(A)$, where $S(A)$ is the space spanned by A.

Vector differentiation

Define the vector differentiation as follows

$$
\frac{d}{d \beta}=\left(\frac{d}{d \beta_{i}}\right)
$$

where β is a $\mathrm{n}^{*} 1$ vector. Then we have the following properties

$$
\begin{gathered}
\frac{d\left(\beta^{\prime} a\right)}{d \beta}=a \\
\frac{d\left(a^{\prime} \beta\right)}{d \beta}=a \\
\frac{d\left(\beta^{\prime} A \beta\right)}{d \beta}=2 A \beta
\end{gathered}
$$

Patterned matrices

If all inverses exist

$$
\begin{gathered}
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A_{11}^{-1}+B_{12} B_{22}^{-1} B_{21} & -B_{12} B_{22}^{-1} \\
-B_{22}^{-1} B_{21} & B_{22}^{-1}
\end{array}\right) \\
\\
=\left(\begin{array}{ccc}
C_{11}^{-1} & -C_{11}^{-1} C_{12} \\
-C_{21} C_{11}^{-1} & A_{22}^{-1}+C_{21} C_{11}^{-1} C_{12}
\end{array}\right)
\end{gathered}
$$

where $B_{22}=A_{22}-A_{21} A_{11}^{-1} A_{12}, B_{12}=A_{11}^{-1} A_{12}, B 21=A_{21} A_{11}^{-1}, C_{11}=A_{11}-A_{12} A_{22}^{-1} A_{21}, C_{12}=A_{12} A_{22}^{-1}$, and $C_{21}=A_{22}^{-1} A_{12}$

Nonsingular

Suppose A is an $n * n$ square matrix. Then A is said to be nonsingular if there exists a matrix A^{-1} such that

$$
A^{-1} A=A A^{-1}=I
$$

Null space

The set of all x such that $A x=0$ is a vector space and is called the null space of A, written $N(A)$.
Theorem 1.1. Suppose A is $n * n$. If $r(A)=r$ then $r(N(A))=n-r$

Trace

Suppose A is an $\mathrm{n} * \mathrm{n}$ square matrix with ijth element $a_{i j}$. The trace of A is defined as

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

Property 1. $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$

Property 2. The trace is invariant under cyclic
Property 3. Suppose A; B; C are $n * n$ square matrices. Then

$$
\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)
$$

Property 4. If A is an $n * n$ matrix with eigenvaules λ_{j}, then $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{j}$ and $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{j}$

Property 5. Assume that A is symmetric, then $\operatorname{tr}\left(A^{s}\right)=\sum_{i=1}^{n} \lambda_{i}^{s}$
Property 6. Assume that A is symmetric and nonsingular, then the eigenvalues of A^{-1} are $\lambda_{i}^{-1}(i=1, \ldots, n)$ and hence $\operatorname{tr}\left(A^{-1}\right)=\sum_{i=1}^{n} \lambda_{i}^{-1}$

Rank

Property 1. $\operatorname{rank}(A B) \leq \operatorname{minimum}(\operatorname{rank} A, \operatorname{rank} B)$
Property 2. If A is any matrix, and P and Q are any conformable nonsingular matrices, then $\operatorname{rank}(P A Q)=$ $\operatorname{rank}(A)$

Property 3. $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime}\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A A^{\prime}\right)$
Property 4. Let A be any $\mathrm{m} * \mathrm{n}$ matrix such that $r=\operatorname{rank}(A)$ and $s=\operatorname{nullity}(A)$, [the dimension of $N(A)$, the null space or kernel of A, i.e., the dimension of $\{x: A x=0\}]$. Then $r+s=n$

Property 5. If $C(A)$ is the column space of A, then $C\left(A^{\prime} A\right)=C\left(A^{\prime}\right)$
Property 6. If A is symmetric, then $\operatorname{rank}(A)$ is equal to the number of nonzero eigenvalues

Eigenvalues and Eigenvectors of a matrix
Suppose A is an $n * n$ square matrix.

$$
A x=\lambda x, \lambda \in \mathbb{R}^{1}
$$

then λ is called an eigenvalue of A and x is called an eigenvector. Note that eigenvectors are not unique.
Property 1. Assume that A is symmetric, then the eigenvalues of $\left(I_{n}+c A\right)$ are $1+c \lambda_{i},(i=1, \ldots, n)$
Property 2. Any $\mathrm{n} * \mathrm{n}$ symmetric matrix A has a set of n orthonormal eigenvectors, and $C(A)$ is the space spanned by those eigenvectors corresponding to nonzero eigenvalues

Theorem 1.2. if x_{1} and x_{2} are eigenvectors with the same eigenvalue, then any nonzero linear combination of x_{1} and x_{2} is also an eigenvector with the same eigenvalue.

Theorem 1.3. λ is an eigenvalue of A if and only if $A-\lambda I$ is singular.
The eigenvalues of a matrix A are found by finding the solutions of the equation for λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Theorem 1.4. Suppose A is $n * n$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$

- $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$
- if A is singular, then $\operatorname{det}(A)=0$
- if A is nonsingular then A^{-1} exists and the eigenvalues are given by $\lambda_{1}^{-1}, \ldots, \lambda_{n}^{-1}$
- the eigenvalues of A^{\prime} are the same as those of A
- $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$ and $\operatorname{tr}\left(A^{-1}\right)=\sum_{i=1}^{n} \lambda_{i}^{-1}$
- if A is symmetric then $\operatorname{tr}\left(A^{r}\right)=\sum_{i=1}^{n} \lambda_{i}^{r}$ for any integer r

Orthogonal matrix

A square matrix is orthogonal if $P P^{\prime}=P^{\prime} P=I$
Theorem 1.5. An $n * n$ matrix P is orthogonal if and only if the columns of P form an orthonormal basis for R^{n}, that is the columns of P are all unit vectors and orthogonal to each other.

Positive-semi definite matrices

A symmetric matrix A is said to be positive-semidefinite (p.s.d.) if and only if $x^{\prime} A x \geq 0 \quad \forall x$
Property 1. The eigenvalues of a p.s.d. matrix are nonnegative
Property 2. If A is p.s.d., then $\operatorname{tr}(A) \geq 0$
Property 3. A is p.s.d. of rank r if and only if there exists an $\mathrm{n} * \mathrm{n}$ matrix R of rank r such that $A=R R^{\prime}$
Property 4. If A is an $\mathrm{n} * \mathrm{n}$ p.s.d. matrix of rank r , then there exists an $\mathrm{n} * \mathrm{r}$ matrix S of rank r such that $S^{\prime} A S=I_{r}$

Property 5. A is p.s.d. then $x^{\prime} A x=0 \Longrightarrow A x=0$

Positive-definite matrices

A symmetric matrix A is said to be positive- definite (p.d.) if $x^{\prime} A x>0 \quad \forall x \neq 0$. We note that a p.d. matrix is also p.s.d.

Property 1. The eigenvalues of a p.d. matrix A are all positive; thus A is also nonsingular
Property 2. A is p.d. if and only if there exists a nonsingular R such that $A=R R^{\prime}$
Property 3. If A is p.d. then so is A^{-1}
Property 4. If A is p.d. then $\operatorname{rank}\left(C A C^{\prime}\right)=\operatorname{rank}(C)$
Property 5. If A is an $\mathrm{n} * \mathrm{n}$ p.d. matrix and C is $\mathrm{p} * \mathrm{n}$ of rank p , then $C A C^{\prime}$ is p.d.
Property 6. If X is $\mathrm{n} * \mathrm{p}$ of rank p , then $X^{\prime} X$ is p.d.
Property 7. A is p.d. if and only if all the leading minor determinants of A [including $\operatorname{det}(A)$ itself] are positive.
Property 8. The diagonal elements of a p.d. matrix are all positive

Property 9. (Cholesky decomposition) If A is p.d., there exists a unique upper tri-angular matrix R with positive diagonal elements such that $A=R^{\prime} R$

Property 10. (Square root of a positive-definite matrix) If A is p.d., there exists a p.d. square root $A^{1 / 2}$ such that $\left(A^{1 / 2}\right)^{2}=A$

Idempotent matrices

A matrix P is idempotent if $P^{2}=P$. A symmetric idempotent matrix is called a projection matrix
Property 1. If P is symmetric, then P is idempotent and of rank r if and only if it has r eigenvalues equal to unity and $n-r$ eigenvalues equal to zero.

Property 2. If P is a projection matrix then $\operatorname{tr}(P)=\operatorname{rank}(P)$
Property 3. If P is idempotent then so is I-P
Property 4. Projection matrices are positive-semidefinite
Property 5. If $P_{i}(i=1,2)$ is a projection matrix and $P_{1}-P_{2}$ is p.s.d. then $P_{1} P_{2}=P_{2} P_{1}=P_{2}$ and $P_{1}-P_{2}$ is a projection matrix

Generalized inverse

Consider the linear transformation $A: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n}$. A generalized inverse of A is the linear transformation A^{-} such that

$$
A A^{-} y=y \text { for all } y \in C(A)
$$

Equivalently, suppose A is an $\mathrm{n} * \mathrm{p}$ matrix, then $A_{p \times n}^{-}$is a generalized inverse of A if

$$
A A^{-} A=A
$$

from the definition we can get

$$
\left(A^{-} A\right)\left(A^{-} A\right)=A^{-}\left(A A^{-} A\right)=A^{-} A
$$

thus $A^{-} A$ is idempotent and hence a projection. The generalized inverse is not unique, but always exists.
Moore-Penrose generalized inverse
Suppose A is an $\mathrm{n}^{*} \mathrm{p}$ matrix. If the generalized inverse $A_{p \times n}^{-}$satisfies four conditions

- $A A^{-} A=A$
- $A^{-} A A^{-}=A^{-}$
- $\left(\mathrm{A} A^{-}\right)^{\prime}=A \mathrm{~A}^{-}$
- $\left(\mathrm{A}^{-} \mathrm{A}\right)^{\prime}=\mathrm{A}^{-} \mathrm{A}$
then $A_{p \times n}^{-}$is called the Moore-Penrose generalized inverse. The Moore-Penrose generalized inverse is unique.

1.2 Matrix decomposition

Theorem 1.6. Spectral decomposition

Suppose A is an $n * n$ symmetric matrix. Then there exists an orthogonal matrix P such that

$$
A=P \wedge P^{\prime}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is an $n * n$ diagonal matrix of the eigenvalues of A with $\lambda_{1} \leq \lambda_{2} \ldots \leq \lambda_{n}$ and P is the orthogonal matrix of orthonormal eigenvectors corresponding to the eigenvalues of A.

Theorem 1.7. Singular value decomposition

Suppose A is an $n^{*} p$ matrix of rank r, where $r \leq \min (n, p)$. There exists orthogonal matrices $U_{p \times p}$ and $V_{n \times n}$ such that

$$
V^{\prime} A U=\left(\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right) \longrightarrow A=V D U^{\prime}, \text { where } D=\left(\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right)
$$

where $\Delta=\operatorname{diag}\left(\delta_{1}, \ldots, \delta_{r}\right)$ is an $r^{*} r$ diggonal matrix with $\delta_{1} \geq \delta_{2} \ldots \geq \delta_{r}>0$. The δ_{i} are called the singular values of A.

2 Linear regression

We are going to learn about the general linear model in the form of $E(Y)=X \beta$ and estimation of β using the least squared method and associated distribution theory. The LSE method consists of minimizing $\sum_{i} \epsilon_{i}^{2}$ with respect to β
Let $\theta=X \beta$, we minimize $\epsilon^{\prime} \epsilon=\|Y-\theta\|^{2}$ subject to $\theta \in C(X)=\Omega$, where Ω is the column space of X .

2.1 Geometric approach

From the image we know that $\|Y-\hat{\theta}\|^{2}$ minimized when $\Omega \perp(y-\hat{\theta})$, which is $X^{\prime}(Y-\hat{\theta})=0 \Rightarrow X^{\prime} \hat{\theta}=X^{\prime} Y$ thus $\hat{\theta}=\left(X^{\prime}\right)^{-1} X^{\prime} Y$. Here $\hat{\theta}$ is uniquely determined being the unique orthogonal projection of Y onto Ω, but β is not necessarily unique.
We have

$$
X^{\prime} \hat{\theta}-X^{\prime} Y=0
$$

defined as normal equation

2.2 Algebraic approach

To derive $\hat{\beta}$ algebraically. Write

$$
\begin{aligned}
\epsilon^{\prime} \epsilon & =(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}) \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-2 \boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{Y}+\boldsymbol{\beta}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}
\end{aligned}
$$

By the vector differentiation we have

$$
\begin{gathered}
-2 X^{\prime} Y+2 X^{\prime} X \beta=0 \\
\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\prime} \boldsymbol{Y}
\end{gathered}
$$

To prove that we get the minimal β from this equation, we still need to take the second derivative, from which we get $2 X^{\prime} X \geq 0$.

2.2.1 When X is full rank

When the columns of X are linearly independent i.e. X is full rank, then there exists a unique vector

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y
$$

Cause when X is full rank, $X^{\prime} X$ is positive-definite and therefore non-singular

2.2.2 When X is not full rank

When the columns of X are linearly dependent i.e. X is not full rank, then the solution is given by

$$
\hat{\beta}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{\prime} \boldsymbol{Y}
$$

where $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-}$is any generalized inverse of $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)$
Proof: $\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\prime} \boldsymbol{Y}$. Consider a g-inverse $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-}$. We know that $\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-}\left(X^{\prime} X\right)=\left(X^{\prime} X\right)$. Then we have $\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-}\left(X^{\prime} X\right) \hat{\beta}=\left(X^{\prime} X\right)\left(X^{\prime} X\right)^{-} X^{\prime} Y=X^{\prime} Y$, by comparing this equation with $\boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X}^{\prime} \boldsymbol{Y}$. We get that $\hat{\beta}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{\prime} \boldsymbol{Y}$ is a solution.

2.3 Projection matrix \mathbf{P}

From the normal equation

$$
\hat{\theta}=X \hat{\beta}=X\left(X^{\prime} X\right)^{-} X^{\prime} Y=P Y
$$

we define the projection matrix P as

$$
\boldsymbol{P}=X\left(X^{\prime} X\right)^{-} X^{\prime}
$$

P is unique and does not depend on the g-inverse used. When the inverse of X^{\prime} exists

$$
\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} X^{\prime}
$$

2.3.1 When X is full rank

Suppose that \boldsymbol{X} is $n \times p$ of rank p, so that $\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}$ then following hold.
(i) \boldsymbol{P} and $\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}$ are symmetric and idempotent.
(ii) $\operatorname{rank}\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}\right)=\operatorname{tr}\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}\right)=n-p$.
(iii) $\boldsymbol{P} \boldsymbol{X}=\boldsymbol{X}$

Proof
(i) $P P=X\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}=X\left(X^{\prime} X\right)^{-1} X^{\prime}$
(ii) $(I-P)(I-P)=I-P-P+P \cdot P=1-P$
(iii) $P X=X\left(X^{\prime} X\right)^{-1} X^{\prime} X=X$

2.3.2 When X is not full rank

If X has rank $r<p$, then the above result still holds but with p replaced by r
Theorem: Suppose that \boldsymbol{X} is $n \times p$ of rank r so that $\boldsymbol{P}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-} \boldsymbol{X}^{\prime}$ then following hold.
(i) \boldsymbol{P} and $\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}$ are symmetric and idempotent.
(ii) $\operatorname{rank}\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}\right)=\operatorname{tr}\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}\right)=n-r$
(iii) $\boldsymbol{P} \boldsymbol{X}=\boldsymbol{X}$

Proof
X has rank r , let X_{1} be the $\mathrm{n} * \mathrm{r}$ matrix with r linearly independent column then $C\left[X_{i}\right]=C[X]$, then

$$
P=X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}
$$

cause the linear space is the same, then it's easily got that $P^{2}=P \quad,(I-P)^{2}=(I-P)$.
Also $\exists L$ such that $X=X_{1} L$
thus $P X=X_{1}\left(X_{1}^{\prime} X_{1}\right)^{-1} X_{1}^{\prime} \cdot X_{1} L=X_{1} L=X$

2.4 Residual Sums of Squares (RSS)

We denote the fitted values $\boldsymbol{X} \hat{\boldsymbol{\beta}}$ by $\hat{\boldsymbol{Y}}=\left(\hat{Y}_{i}, \ldots, \hat{Y}_{n}\right)^{\prime}$. The elements of the vector

$$
\begin{aligned}
\boldsymbol{Y}-\hat{\boldsymbol{Y}} & =\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}} \\
& =\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}\right) \boldsymbol{Y},
\end{aligned}
$$

then

$$
\begin{aligned}
R S S & =[(I-\boldsymbol{P}) \boldsymbol{Y}]^{\prime}[(I-\boldsymbol{P}) \boldsymbol{Y}] \\
& =Y^{\prime}(I-\boldsymbol{P}) Y
\end{aligned}
$$

Another way of doing this is

$$
\begin{aligned}
\epsilon^{\prime} \boldsymbol{\epsilon} & =(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}) \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-2 \hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{Y}+\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}+\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}} \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}+2 \hat{\boldsymbol{\beta}}^{\prime}\left[\boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}-\boldsymbol{X}^{\prime} \boldsymbol{Y}\right] \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}
\end{aligned}
$$

thus
$R S S=\boldsymbol{Y}^{\prime} \boldsymbol{Y}-\hat{\boldsymbol{\beta}}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \hat{\boldsymbol{\beta}}$

2.5 PROPERTIES OF LEAST SQUARES ESTIMATES

$\hat{\boldsymbol{\beta}}$ is an unbiased estimate of $\boldsymbol{\beta}$. That is

$$
E(\hat{\beta})=\beta
$$

The variance of the Least Square Estimator of β is given by

$$
\operatorname{Var}[\hat{\boldsymbol{\beta}}]=\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}
$$

Proof
$\operatorname{Var}(\hat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} \operatorname{Var}(Y) X\left[\left(X^{\prime} X\right)^{-1}\right]^{\prime}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$
$E(\hat{\beta})=\left(X^{\prime} X\right)^{-1} X^{\prime} E[Y]=\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta=\beta$
Similar result holds for $\hat{\theta}$

$$
\begin{aligned}
& E(\hat{\theta})=P E(Y)=P \underbrace{X \beta}_{\theta}=X \beta=\theta \\
& \operatorname{Var}(\hat{\theta})=P \operatorname{Var}(Y) P^{\prime}=\sigma^{2} P P^{\prime}=\sigma^{2} P
\end{aligned}
$$

2.5.1 Best Linear Unbiased Estimator, BLUE

THEOREM 3.2: Let $\hat{\boldsymbol{\theta}}$ be the least squares estimate of $\boldsymbol{\theta}=\boldsymbol{X} \boldsymbol{\beta}$ where $\boldsymbol{\theta} \in \Omega=C(\boldsymbol{X})$ and \boldsymbol{X} may not have full rank. Then among the class of linear unbiased estimates of $\boldsymbol{c}^{\prime} \boldsymbol{\theta}, \boldsymbol{c}^{\prime} \hat{\boldsymbol{\theta}}$ is the unique estimate with minimum variance. We say that $c^{\prime} \hat{\theta}$ is the best linear unbiased estimate $B L U E$ of $\boldsymbol{c}^{\prime} \theta$
Proof

$$
\begin{aligned}
& \hat{\theta}=P Y \quad(L S E) \\
& E\left(c^{\prime} \hat{\theta}\right)=c^{\prime} E(\hat{\theta})=c^{\prime} \theta \quad, \forall \theta \in \Omega=c[x] \Rightarrow \text { unbiasness }
\end{aligned}
$$

Let $d^{\prime} Y$ be another estimator which is linear and unbiased then

$$
E\left(d^{\prime} Y\right)=d^{\prime} E(Y)=d^{\prime} X \beta=d^{\prime} \theta \xrightarrow{\text { unbiasness }}\left(d^{\prime}-c^{\prime}\right) \theta=0 \quad \Rightarrow \quad(d-c) \perp \Omega \Rightarrow P(c-d)=0 \Rightarrow P c=P d
$$

then

$$
\begin{aligned}
\operatorname{Var}\left(d^{\prime} Y\right)-\operatorname{Var}\left(c^{\prime} \hat{\theta}\right) & =d^{\prime} \operatorname{Var}(Y) d-\operatorname{Var}\left(c^{\prime} \hat{\theta}\right) \Leftarrow c^{\prime} \hat{\theta}=c^{\prime} P Y=(P c)^{\prime} Y=(P d)^{\prime} Y \\
& =d^{\prime}\left(\sigma^{2} I\right) d-\operatorname{Var}\left[(P d)^{\prime} Y\right]=\sigma^{2} d^{\prime} d-(P d)^{\prime} \sigma^{2}(P d) \\
& =\sigma^{2} d^{\prime} d-\sigma^{2} d^{\prime} P d \\
& =\sigma^{2} d^{\prime}(I-P) d \\
& =\sigma^{2} d^{\prime}(I-P)^{\prime}(I-P) d \\
& =\sigma^{2}[(I-P) d]^{\prime}[(1-P) d] \geq 0
\end{aligned}
$$

equality holds when

$$
(I-P) d=0 \Rightarrow d=P d=P c
$$

If X is full rank, then $a^{\prime} \hat{\beta}$ is the BLUE of $a^{\prime} \beta$ for every vector a.

2.5.2 Unbiased estimation of σ^{2}

THEOREM 3.3 $E[\boldsymbol{Y}]=\boldsymbol{X} \boldsymbol{\beta}$ where X is an $n \times p$ matrix of rank $r(r \leq p)$ and $\operatorname{Var}[\boldsymbol{Y}]=\sigma^{2} \boldsymbol{I}_{\boldsymbol{n}}$ then

$$
S^{2}=\frac{(\boldsymbol{Y}-\hat{\boldsymbol{\theta}})^{\prime}(\boldsymbol{Y}-\hat{\boldsymbol{\theta}})}{n-r}=\frac{R S S}{n-r}
$$

is an unbiased estimate of σ^{2}
Proof

$$
\begin{aligned}
\text { residual } & =(Y-X \hat{\beta})=(I-P) Y \\
R S S & =[(I-P) Y]^{\prime}[(I-P) Y]=Y^{\prime}(1-P) Y \\
E(R S S) & =E\left\{Y^{\prime}(I-P) Y\right\}=\operatorname{tr}\left[(I-P) * \sigma^{2} I\right]+(X \beta)^{\prime} \underbrace{(1-P)(x \beta)}_{X-P X=0} \\
& \Rightarrow E\left(\frac{R S S}{n-r}\right)=\sigma^{2} \quad \text { unbiased estimator }
\end{aligned}
$$

3 Linear regression with distribution assumption

Until now the only assumptions we have made about the ϵ_{i} are that $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2} I_{n}$. If we assume that the ϵ_{i} are also normally distributed, i.e. $\epsilon \sim N_{n}\left(0, \sigma^{2} I_{n}\right)$ and hence $Y \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{\boldsymbol{n}}\right)$. A number of distributional results then follow.
THEOREM 3.5 if $Y \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{\boldsymbol{n}}\right)$, where X is n*p of rank p then

- $\hat{\boldsymbol{\beta}} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right)$
- $(\hat{\beta}-\boldsymbol{\beta})^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) / \sigma^{2} \sim \chi_{p}^{2}$
- $\hat{\beta}$ is independent of S^{2}
- $\mathrm{RSS} / \sigma^{2}=(n-p) S^{2} / \sigma^{2} \sim \chi_{n-p}^{2}$

Proof

- $\hat{\beta}=\underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime}}_{c} Y$ and also $Y \sim N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{\boldsymbol{n}}\right)$.
then $c Y \sim M V N\left(c X \beta, c \Sigma c^{\prime}\right)$ where $\operatorname{rank}(c)=\operatorname{rank}(X)=\operatorname{rank}\left(X^{\prime}\right)$
$c X \beta=\beta, c \Sigma C^{\prime}=\sigma^{2} c c^{\prime}=\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left[\left(X^{\prime} X\right)^{-1}\right]^{\prime}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$
- $(\hat{\beta}-\boldsymbol{\beta})^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) / \sigma^{2} \sim \chi_{p}^{2}$ since $\hat{\boldsymbol{\beta}} \sim N_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right)$
- $\hat{\beta}=\underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime}} Y$ and $(n-p) S^{2}=Y^{\prime}(I-P) Y=[(I-P) Y]^{\prime}[(I-P) Y]$ then $\left(X^{\prime} X\right)^{-1} X^{\prime}[I-P]=$ $\left(X^{\prime} X\right)^{-1} X^{\prime}\left[I-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]=\left(X^{\prime} X\right)^{-1} X^{\prime}-\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} X^{\prime}=0$
- $\frac{R S S}{\sigma^{2}}=\frac{Y^{\prime}(1-P) Y}{\sigma^{2}}$ since $(1-P)$ is idempotent with $\operatorname{rank}(1-P)=n-r$ based on THEOREM 2.7 we have $\mathrm{RSS} / \sigma^{2}=(n-p) S^{2} / \sigma^{2} \sim \chi_{n-p}^{2}$

3.1 MLE

Assuming full rank of X , the likelihood is

$$
L\left(\beta, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\|\boldsymbol{Y}-\boldsymbol{X} \beta\|^{2}\right]
$$

then the log-likelihood is

$$
\ell\left(\beta, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}(Y-X \beta)^{\prime}(Y-X \beta)=-\frac{n}{2} \log (2 \pi \mu)-\frac{1}{2 \mu}(Y-X \beta)^{\prime}(Y-X \beta)
$$

where $\sigma^{2}=\mu$
then

$$
\frac{\partial l}{\partial \beta}=-\frac{1}{2 \mu}\left(-2 X^{\prime} Y+2 X^{\prime} X \beta\right) \stackrel{\text { set }}{=} 0 \Rightarrow \hat{\beta}_{\mathrm{mle}}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \Rightarrow \text { lse }=\mathrm{mle}
$$

and

$$
\frac{\partial l}{\partial \mu}=\frac{-n}{2 \mu}+\frac{1}{2 \mu^{2}}(Y-X \beta)^{\prime}(Y-X \beta) \stackrel{\text { set }}{=} 0 \Rightarrow \hat{\mu}=\frac{(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})}{n}=\frac{\operatorname{RSS}}{n} \neq \hat{\mu}_{\text {lse }}=\underbrace{\frac{(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})}{n-p}}_{\text {unbiased estimator for } \sigma^{2}}
$$

then for the distribution

$$
\begin{gathered}
\frac{\partial^{2} l}{\partial \beta \partial \beta^{\prime}}=-\frac{1}{\sigma^{2}}\left(X^{\prime} X\right) \quad \Rightarrow-E\left[-\frac{1}{\sigma^{2}}\left(X^{\prime} X\right)\right]=\frac{X^{\prime} X}{\sigma^{2}} \\
\frac{\partial^{2} l}{\partial \beta \partial \mu}=\frac{1}{2 \mu^{2}}\left(-2 X^{\prime} Y+2 X^{\prime} X \beta\right) \text {, sine } \hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y \quad, \frac{\partial^{2} l}{\partial \beta \partial \mu}=\frac{\partial^{2} l}{\partial \mu \partial \beta}=0 \\
\frac{\partial^{2} l}{\partial \mu^{2}}=\frac{n}{2 \mu^{2}}-\frac{1}{\mu^{3}}(Y-X \beta)^{\prime}(Y-X \beta) \Rightarrow-E\left[-\frac{\partial^{2} l}{\partial \mu^{2}}\right]=\frac{-n}{2 \mu^{2}}+\frac{1}{\mu^{3}} \underbrace{E\left[(Y-X \beta)^{\prime}(Y-X \beta)\right]}_{(Y-X \beta)^{\prime}\left(\sigma^{2} I\right)^{-1}(Y-X \beta) \sim \chi_{n}^{2}}=\frac{-n}{2 \mu^{2}}+\frac{n \sigma^{2}}{\mu^{3}}=\frac{-n}{2 \mu^{2}}+\frac{n \mu}{\mu^{3}}=\frac{n}{2 \mu^{2}}
\end{gathered}
$$

then

$$
I=\left[\begin{array}{cc}
\frac{1}{\mu} X^{\prime} X & 0 \\
0 & \frac{n}{2 \mu^{2}}
\end{array}\right] \Rightarrow I^{-}=\left[\begin{array}{cc}
\mu\left(X^{\prime} X\right)^{-1} & 0 \\
0 & \frac{2 \mu^{2}}{n}
\end{array}\right]
$$

then we have

$$
\binom{\hat{\beta}_{\text {mle }}}{\hat{\sigma}_{\text {mle }}^{2}} \stackrel{\text { asymptotically normal }}{\sim}\left(\binom{\beta}{\sigma^{2}},\left(\begin{array}{cc}
\left(X^{\prime} X\right)^{-1} \sigma^{2} & 0 \\
0 & \frac{2 \sigma^{4}}{n}
\end{array}\right)\right)
$$

3.1.1 review on MLE properties

Score:The partial derivative with respect to θ of the natural logarithm of the likelihood function is called the score

$$
\begin{gathered}
Z=l^{\prime}=\frac{\partial}{\partial \theta} \log f(X ; \theta) \\
E(Z)=0 \text { and } Z \xrightarrow{d} N\left(0, I\left(\theta_{0}\right)\right)
\end{gathered}
$$

under θ_{0}
Fisher information: The variance of the score is defined to be the Fisher information

$$
\mathcal{I}(\theta)=\mathrm{E}\left[\left.\left(\frac{\partial}{\partial \theta} \log f(X ; \theta)\right)^{2} \right\rvert\, \theta\right]=-\mathrm{E}\left[\left.\frac{\partial^{2}}{\partial \theta^{2}} \log f(X ; \theta) \right\rvert\, \theta\right]
$$

Property 1. If $\hat{\theta}$ is the MLE estimate of θ_{0}, then it has the following property:

$$
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \frac{1}{I\left(\theta_{0}\right)}\right)
$$

3.1.2 Orthogonal columns in the regression matrix

Suppose that in the full-rank model $E[\boldsymbol{Y}]=\boldsymbol{X} \boldsymbol{\beta}$ the matrix X has a column representation where the columns are all mutually orthogonal

$$
\boldsymbol{X}=\left(\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(1)}, \cdots, \boldsymbol{x}^{(p-1)}\right)
$$

then we will have

$$
\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y=\left[\begin{array}{ccc}
{\left[x^{(0)^{\prime}} x^{(0)}\right]^{-1}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & {\left[x^{(p-1)^{\prime}} x^{(p-1)}\right]^{-1}}
\end{array}\right]\left[\begin{array}{c}
x^{(0) \prime} Y \\
\vdots \\
x^{(p-1) \prime} Y
\end{array}\right]=\left[\frac{x^{(j) \prime} Y}{x^{(j) \prime} x^{(j)}}\right]
$$

this implies that under the orthogonal condition, if we only want to estimate certain β_{j} then we don't need to fit the whole model instead we can only fit Y on $x^{(j)}$

3.2 Estimation with linear constrain

The conclusion from this part is applicable under both MLE and LSE cause we only estimate $\hat{\beta}$
Let $Y=X \beta+\epsilon$ where X is $\mathrm{n}^{*} \mathrm{p}$ of full rank p . Suppose that we wish to find the minimum of $\epsilon^{\prime} \epsilon$ subject to the linear restrictions $A \beta=c$ where A is a known $\mathrm{q}^{*} \mathrm{p}$ matrix of rank q and c is a known $\mathrm{q}^{*} 1$ vector then with Lagrange multiplier we can get

$$
\hat{\beta}_{H}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta})
$$

where $\hat{\beta}$ is the estimation without constrain, i.e. $\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y$.
Proof let $\lambda=\left(\begin{array}{c}\lambda_{1} \\ \vdots \\ \lambda_{q}\end{array}\right)$ then we define Lagrange multiplier as

$$
\text { Lagrange multiplier }=\left(\beta^{\prime} A^{\prime}-C^{\prime}\right) \lambda
$$

let

$$
S=\min _{\beta}(Y-X \beta)^{\prime}(Y-X \beta)+\left(\beta^{\prime} A^{\prime}-c^{\prime}\right) \lambda
$$

then

$$
\frac{\partial S}{\partial \beta}=-2 X^{\prime} Y+2 X^{\prime} X \beta+A^{\prime} \lambda \stackrel{\text { set }}{=} 0 \Rightarrow\left(X^{\prime} X\right) \beta=X^{\prime} Y-\frac{1}{2} A^{\prime} \lambda \Rightarrow \hat{\beta}_{H}=\left(X^{\prime} X\right)^{-1} X^{\prime} Y-\frac{1}{2}\left(X^{\prime} X\right)^{-1} A^{\prime} \hat{\lambda_{H}}
$$

suppose $\hat{\beta_{H}}$ and $\hat{\lambda_{H}}$ are the solution under constrain $H: A \beta=c$ then we have

$$
c=A \hat{\beta}_{H}=A \underbrace{\left(X^{\prime} X\right)^{-1} X^{\prime} Y}_{\hat{\beta} \text { under no constrain }}-\frac{1}{2} A\left(X^{\prime} X\right)^{-1} A^{\prime} \hat{\lambda}_{H}=A \hat{\beta}-\frac{1}{2} A(X X)^{-1} A^{\prime} \hat{\lambda}_{H}
$$

since $\operatorname{rank}(A)=q, A\left(X^{\prime} X\right)^{-1} A^{\prime}$ is non-singular. Thus

$$
-\frac{1}{2} \hat{\lambda}_{H}=\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta})
$$

therefore

$$
\hat{\beta}_{H}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta})
$$

we also need to prove the $\hat{\beta}_{H}$ minimize $\epsilon^{\prime} \epsilon$ under constrain

$$
\begin{aligned}
(Y-X \beta)^{\prime}(Y-X \beta) & =(Y-X \hat{\beta}+X \hat{\beta}-X \beta)^{\prime}(Y-X \hat{\beta}+X \hat{\beta}-X \beta) \\
& =(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})+(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta)
\end{aligned}
$$

where

$$
\begin{aligned}
(\hat{\beta}-\beta)^{\prime} X^{\prime} X(\hat{\beta}-\beta) & =\left(\hat{\beta}-\hat{\beta}_{H}+\hat{\beta}_{H}-\beta\right)^{\prime} X^{\prime} X\left(\hat{\beta}-\hat{\beta}_{H}+\hat{\beta}_{H}-\beta\right) \\
& =\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}-\hat{\beta}_{H}\right)+\left(\hat{\beta}_{H}-\beta\right)^{\prime} X^{\prime} X\left(\hat{\beta}_{H}-\beta\right)+2\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}_{H}-\beta\right) \\
& =\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}-\hat{\beta}_{H}\right)+\left(\hat{\beta}_{H}-\beta\right)^{\prime} X^{\prime} X\left(\hat{\beta}_{H}-\beta\right)
\end{aligned}
$$

since

$$
\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}_{H}-\beta\right)=\left[\frac{1}{2}\left(X^{\prime} X\right)^{-1} A^{\prime} \hat{\lambda}_{H}\right]^{\prime} X^{\prime} X\left(\hat{\beta}_{H}^{\prime}-\beta\right)=\frac{1}{2} \hat{\lambda}_{H}^{\prime} A\left(\hat{\beta}_{H}-\beta\right)=\frac{1}{2} \hat{\lambda}_{H}(c-c)=0
$$

we get
$(Y-X \beta)^{\prime}(Y-X \beta)=(Y-X \hat{\beta})^{\prime}(Y-X \hat{\beta})+\left[X\left(\hat{\beta}-\hat{\beta}_{H}\right)\right]^{\prime}\left[X\left(\hat{\beta}-\hat{\beta}_{H}\right)\right]+\left[X\left(\hat{\beta}_{H}-\beta\right)\right]^{\prime}\left[X\left(\hat{\beta}_{H}-\beta\right)\right]$
all three terms are positive, thus minimum achieved when

$$
\left[X\left(\hat{\beta}_{H}-\beta\right)\right]=0
$$

i.e.

$$
\beta=\hat{\beta}_{H}
$$

then we get

$$
\left\|\mathbf{Y}-\hat{\mathbf{Y}}_{H}\right\|^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}+\left\|\hat{\mathbf{Y}}-\hat{\mathbf{Y}}_{H}\right\|^{2}
$$

3.3 Identifiability

The conclusion from this part is applicable under both MLE and LSE cause we only estimate $\hat{\beta}$
A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining a sample. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables.
Let

$$
\boldsymbol{P}=\left\{\boldsymbol{P}_{\theta}: \theta \in \Theta\right\}
$$

then

$$
\boldsymbol{P}_{\theta_{1}}=\boldsymbol{P}_{\theta_{2}} \Longrightarrow \theta_{1}=\theta_{2}
$$

for $\forall \theta_{1}, \theta_{2} \in \Theta$
We have $E(\boldsymbol{Y})=\boldsymbol{X} \boldsymbol{\beta}$. The design matrix X is $\mathrm{n}^{*} \mathrm{p}$ and is not full rank. So $\hat{\beta}$ is not unique. But $\theta=X \beta$ and $\hat{\theta}$ is unique. Also RSS $=Y^{\prime}(I-P) Y$ is unique. We can always have solution to β based on \mathbf{g} inverse. The other way is that we impose constraints H so that models are identifiable.

$$
H \beta=0
$$

let

$$
G=\left[\begin{array}{l}
X \\
H
\end{array}\right]
$$

then we have

$$
\hat{\beta}=\left(G^{\prime} G\right)^{-1} X^{\prime} Y
$$

Proof

$$
G=\binom{X_{n \times p}}{H_{(p-r) \times p}} \Rightarrow G^{\prime}=\left(X^{\prime}, H^{\prime}\right) \Rightarrow G^{\prime} G=X^{\prime} X+H^{\prime} H
$$

then G^{-1} exists cause G is full rank. We know

$$
\left(X^{\prime} X\right) \hat{\beta}=X^{\prime} Y, \quad H \hat{\beta}=0
$$

thus

$$
\left(G^{\prime} G-H^{\prime} H\right) \hat{\beta}=X^{\prime} Y \Rightarrow G^{\prime} G \hat{\beta}=X^{\prime} Y \Rightarrow \hat{\beta}=\left(G^{\prime} G\right)^{-1} X^{\prime} Y
$$

We have that $\hat{\beta}$ is unbiased.
Proof

$$
\begin{aligned}
E(\hat{\beta})=E\left[\left(G^{\prime} G\right)^{-1} X^{\prime} Y\right]=\left(G^{\prime} G\right)^{-1} X^{\prime} E(Y) & =\left(G^{\prime} G\right)^{-1} X^{\prime} X \beta \\
& =\left(G^{\prime} G\right)^{-1}\left(G^{\prime} G-H^{\prime} H\right) \beta \\
& =\beta-\left(G^{\prime} G\right)^{-1} H^{\prime} \underbrace{H \beta}_{0} \\
& =\beta
\end{aligned}
$$

3.4 Estimability

Since $\hat{\beta}$ is not unique, β is not estimable. We consider function of elements of β, i.e. $a^{\prime} \beta$
Definition The parametric function $a^{\prime} \beta$ is said to be estimable if it has a linear unbiased estimate, say $b^{\prime} Y$ This implies that

$$
\begin{aligned}
& E\left(b^{\prime} Y\right)=b^{\prime} E(Y)=b^{\prime} X \beta \quad, \forall \beta \\
& b^{\prime} X \beta=a^{\prime} \beta, \forall \beta \\
& a^{\prime}=b^{\prime} X \text { or } a=X^{\prime} b
\end{aligned}
$$

thus THEOREM 1

$$
\begin{aligned}
a^{\prime} \beta \text { is estimatable } & \Leftrightarrow a=X^{\prime} b \\
& \Leftrightarrow a \in C\left[X^{\prime}\right] \text { or }
\end{aligned}
$$

THEOREM 2 if $a^{\prime} \beta$ is estimable and $\hat{\beta}$ is any solution of the normal equation then (1) $a^{\prime} \hat{\beta}$ is unique and (2) $a^{\prime} \hat{\beta}$ is the BLUE of $a^{\prime} \beta$

THEOREM $3 a^{\prime} \beta$ is estimable if and only if $a^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} X=a^{\prime}$

Proof
$\Rightarrow a^{\prime} \beta$ is estimable then

$$
\begin{aligned}
& \exists c \text { s.t. } a^{\prime}=c^{\prime} X \\
& \Rightarrow a^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} X=c^{\prime} X\left(X^{\prime} X\right)^{-} X^{\prime} X=c^{\prime} P X=c^{\prime} X=a^{\prime}
\end{aligned}
$$

\Rightarrow suppose $a^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} X=a^{\prime}$ then

$$
E\left[a^{\prime} \hat{\beta}\right]=E\left[a^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} Y\right]=a^{\prime}\left(X^{\prime} X\right)^{-} X^{\prime} X \beta=a^{\prime} \beta
$$

4 Generalized least square

Having developed a least squares theory for the full-rank model $Y=X \beta+\epsilon$, where $E(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2} I$, we now consider what modifications are necessary if we allow the ϵ_{i} to be correlated. In particular, we assume the $\operatorname{Var}[\boldsymbol{\epsilon}]=\sigma^{2} \boldsymbol{V}$, where V is a known $\mathrm{n} *$ n positive-definite matrix.

Theorem 4.1. Under the above setting, we have

$$
\begin{gathered}
\boldsymbol{\beta}^{\star}=\left(\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y} \\
\operatorname{Var}\left[\boldsymbol{\beta}^{\star}\right]=\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \\
R S S==\left(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}^{\star}\right)^{\prime} V^{-1}\left(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}^{\star}\right)
\end{gathered}
$$

Proof $Y=X \beta+\epsilon$, where $\epsilon \sim N\left(0, \sigma^{2} V\right)$. Since V is a positive-definite

$$
\Rightarrow \exists K_{n * n} \text { s.t. } V=K K^{\prime}, K^{-1} \text { exist }
$$

then write

$$
\underbrace{k^{-1} Y}_{Z}=\underbrace{K^{-1} X}_{B} \beta+\underbrace{K^{-1} \varepsilon}_{\eta} \Rightarrow z=B \beta+\eta
$$

, where $E(\eta)=0, \operatorname{Var}(\eta)=\sigma^{2} I$ since

$$
E(\eta)=E\left(K^{-1} \varepsilon\right)=0 \quad ; \operatorname{Var}(\eta)=\operatorname{Var}\left(K^{-1} \varepsilon\right)=K^{-1} \operatorname{Var}(\varepsilon)\left(K^{-1}\right)^{\prime}=K^{-1} \sigma^{2} K K^{\prime}\left(K^{\prime}\right)^{-1}=\sigma^{2} I
$$

then

$$
\beta^{*}=\left(B^{\prime} B\right)^{-1} B^{\prime} Z=\left(X^{\prime} K^{-1 \prime} K^{-1} X\right)^{-1} X^{\prime} K^{-1^{\prime}} K^{-1} Y=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} Y
$$

then

$$
E\left(\beta^{*}\right)=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} X \beta=\beta \quad \text { unbiased }
$$

$$
\begin{aligned}
& \operatorname{Var}\left(\beta^{*}\right)=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \operatorname{Var}(Y)\left[\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}\right]^{\prime}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \sigma^{2} V \quad\left[\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}\right]^{\prime} \\
& =\left(X^{\prime} V^{-1} X\right)^{-1} \sigma^{2} \\
& E\left[\boldsymbol{\beta}^{\star}\right]=\left(\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{\beta} \\
& E\left[\left(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}^{\star}\right)^{\prime} \boldsymbol{V}^{-1}\left(\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}^{\star}\right)\right]=(n-p) \sigma^{2} \\
& R S S=\left(Z-B \beta^{*}\right)^{\prime}\left(Z-B \beta^{*}\right)=\left(K^{-1} Y-K^{-1} X \beta^{*}\right)^{\prime}\left(K^{-1} Y-K^{-1} X \beta^{*}\right) \\
& \\
& =\left(Y-X \beta^{*}\right)^{\prime}\left(K^{-1}\right)^{\prime} K^{-1}\left(Y-X \beta^{*}\right) \\
& \\
& =\left(Y-X \beta^{*}\right)^{\prime} V^{-1}\left(Y-X \beta^{*}\right)
\end{aligned}
$$

Alternative method for deriving the β is minimizing $\eta^{\prime} \eta$ with respect to β

$$
\begin{aligned}
\boldsymbol{\eta}^{\prime} \boldsymbol{\eta} & =\boldsymbol{\epsilon}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{\epsilon} \\
& =(\boldsymbol{Y}-\boldsymbol{X} \beta)^{\prime} V^{-1}(\boldsymbol{Y}-\boldsymbol{X} \beta) \\
& =\boldsymbol{Y}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}-2 \beta^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}+\beta^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \beta \\
& \frac{\partial \boldsymbol{\eta}^{\prime} \boldsymbol{\eta}}{\partial \boldsymbol{\beta}}=-\mathbf{2} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}+2 \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X} \boldsymbol{\beta} \stackrel{\text { set }}{=} 0
\end{aligned}
$$

we also get

$$
\boldsymbol{\beta}^{\star}=\left(\boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{V}^{-1} \boldsymbol{Y}
$$

A special case is that when

$$
\boldsymbol{V}=\operatorname{diag}\left(w_{1}^{-1}, w_{2}^{-1}, \cdots, w_{n}^{-1}\right)\left(w_{i}>0\right)
$$

we have

$$
\begin{gathered}
\boldsymbol{\beta}^{\star}=\frac{\sum_{i} w_{i} Y_{i} x_{i}}{\sum_{i} w_{i} x_{i}^{2}} \\
\left(X^{\prime} V^{-1} X\right)^{-1}=\left(x^{\prime} V^{-1} x\right)^{-1}=\left(\sum w_{i} x_{i}^{2}\right)^{-1}
\end{gathered}
$$

Theorem 4.2. $a^{\prime} \beta^{*}$ is the best linear unbiased estimate (BLUE) of $a^{\prime} \beta$ under the generalized linear model.
Proof

$$
a^{\prime} \beta^{*}=\underbrace{a^{\prime}\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}}_{b^{\prime}} Y=b^{\prime} Y
$$

is lienar in Y and also unbiased. Let $b_{-1}^{\prime} Y$ be another unbiased linear estimator of $a^{\prime} \beta$

$$
\begin{gathered}
a^{\prime} \beta^{*}=\alpha^{\prime}\left(B^{\prime} B\right)^{-1} B^{\prime} Z \\
b_{1}^{\prime} Y=b_{1}^{\prime} K K^{-1} Y=\left(K^{\prime} b_{1}\right)^{\prime} Z
\end{gathered}
$$

by previous theorem BLUE:

$$
\operatorname{Var}\left(a^{\prime} \beta^{*}\right) \leqslant \operatorname{Var}\left(\left(K^{\prime} b_{1}\right)^{\prime} Z\right)=\operatorname{Var}\left(b_{1}^{\prime} Y\right)
$$

equality holds if and only if

$$
\left(K^{\prime} b_{1}\right)^{\prime}=a^{\prime}\left(B^{\prime} B\right)^{-1} B^{\prime} \Rightarrow b_{1}^{\prime} K=a^{\prime}\left(B^{\prime} B\right)^{-1} B^{\prime} \Rightarrow b_{1}^{\prime}=a^{\prime}\left(B^{\prime} B\right)^{1} B^{\prime} K^{-1}=a^{\prime}\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1}=b^{\prime}
$$

5 Hypothesis Testing

We are interested in the form of $H_{0}=A \beta=0$

5.1 Likelihood ratio test

$$
\begin{aligned}
& G: Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p-1} x_{i, p-1}+\epsilon_{i} \text {, full model } \\
& H: Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{r-1} x_{i, r-1}+\epsilon_{i}, \text { reduced model } \\
& \text { Hypothesis of interest is } H_{0}: \beta_{r}=\beta_{r+1}=\ldots \ldots=\beta_{p-1}=0
\end{aligned}
$$

Given the linear model $G: Y=X \beta+\epsilon$, where X is $\mathrm{n}^{*} \mathrm{p}$ of rank p and $\epsilon \sim N_{n}\left(0, \sigma^{2} I_{n}\right)$, we wish to test the hypothesis $H_{0}: \mathbf{A} \beta=0$, where A is $\mathrm{q}^{*} \mathrm{p}$ of rank q . the likelihood function for G is

$$
L\left(\boldsymbol{\beta}, \sigma^{2}\right)=\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left[-\frac{1}{2 \sigma^{2}}\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}\right]
$$

under the MLE

$$
\hat{\sigma}^{2}=\|\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}}\|^{2} / n
$$

then the likelihood becomes

$$
L\left(\hat{\boldsymbol{\beta}}, \hat{\sigma}^{2}\right)=\left(2 \pi \hat{\sigma}^{2}\right)^{-n / 2} e^{-n / 2}
$$

let $\hat{\beta}_{H}$ and $\hat{\sigma^{2}}{ }_{H}$ be the estimator of $Y=X \beta+\epsilon$ when $\mathbf{A} \beta=0$, then under the hypothesis

$$
L\left(\hat{\boldsymbol{\beta}_{\boldsymbol{H}}}, \hat{\sigma}_{H}^{2}\right)=\left(2 \pi \hat{\sigma}_{H}^{2}\right)^{-n / 2} e^{-n / 2}
$$

then the likelihood ratio test of H is given by

$$
\Lambda=\frac{L\left(\hat{\beta_{H}}, \hat{\sigma}_{H}^{2}\right)}{L\left(\hat{\beta}, \hat{\sigma}^{2}\right)}=\left(\frac{\hat{\sigma}^{2}}{\hat{\sigma}_{H}^{2}}\right)^{n / 2}
$$

We have learned that $-2 \log \Lambda$ has a chi-squared distribution.

5.2 F test

In summary

$$
F=\frac{n-p}{q}\left(\Lambda^{-2 / n}-1\right)
$$

has an $F_{q, n-p}$ distribution when H_{0} is true. And we also have

$$
R S S_{H}-R S S=\left\|\hat{\boldsymbol{Y}}-\hat{\boldsymbol{Y}}_{\boldsymbol{H}}\right\|^{2}=(\boldsymbol{A} \hat{\boldsymbol{\beta}}-\boldsymbol{c})^{\prime}\left[\boldsymbol{A}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{A}^{\prime}\right]^{-1}(\boldsymbol{A} \hat{\boldsymbol{\beta}}-\boldsymbol{c})
$$

-

$$
\begin{aligned}
E\left[R S S_{H}-R S S\right] & =\sigma^{2} q+(\mathbf{A} \beta-\boldsymbol{c})^{\prime}\left[\boldsymbol{A}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{A}^{\prime}\right]^{-1}(\boldsymbol{A} \beta-\boldsymbol{c}) \\
& =\sigma^{2} q+\left(R S S_{H}-R S S\right)_{Y=E[\boldsymbol{Y}]}
\end{aligned}
$$

-

$$
F=\frac{\overbrace{\left(R S \widetilde{S}_{H}-R S S\right)}^{\text {improvement }} / q}{R S S /(n-p)}=\frac{(A \hat{\beta}-c)^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(A \hat{\beta}-c)}{q S^{2}}
$$

is distributed as $F_{q, n-p}$ (the F-distribution with q and n -p degrees of freedom, respectively)

- when $c=0, F$ can be expressed in the form

$$
F=\frac{n-p}{q} \frac{Y^{\prime}\left(P-P_{H}\right) Y}{Y^{\prime}\left(I_{n}-P\right) Y}
$$

where P_{H} is symmetric and idempotent and $\boldsymbol{P}_{H} \boldsymbol{P}=\boldsymbol{P} \boldsymbol{P}_{H}=\boldsymbol{P}_{H}$
Proof $y=X \beta+\varepsilon$, where $\operatorname{rank}(X)=p, \operatorname{rank}(A)=q$ and $H_{0}: A \beta=c$. Under the constrain, $H_{0}: A \beta=c$ we know

$$
\begin{equation*}
\hat{\beta}_{H}=\hat{\beta}+\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta}) \tag{1}
\end{equation*}
$$

also since we have $\left\|\mathbf{Y}-\hat{\mathbf{Y}}_{H}\right\|^{2}=\|\mathbf{Y}-\hat{\mathbf{Y}}\|^{2}+\left\|\hat{\mathbf{Y}}-\hat{\mathbf{Y}}_{H}\right\|^{2}$ we get

$$
R S S_{H}=R S S+\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}-\hat{\beta}_{H}\right)
$$

from 1 we know that

$$
\hat{\beta}_{H}-\hat{\beta}=\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta})
$$

and

$$
\begin{aligned}
R S S_{H}-R S S & =\left(\hat{\beta}-\hat{\beta}_{H}\right)^{\prime} X^{\prime} X\left(\hat{\beta}-\hat{\beta}_{H}\right) \\
& =(c-A \hat{\beta})^{\prime}\left[A(X X)^{-1} A^{\prime}\right]^{-1} A(X X)^{-1}(X X)(X X)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta}) \\
& =(c-A \hat{\beta})^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta}) \\
& =(A \hat{\beta}-c)^{\prime}\left[A(X X)^{-1} A^{\prime}\right]^{-1}(A \hat{\beta}-c)
\end{aligned}
$$

the first equation is proved
We also know that

$$
A \hat{\beta} \sim N(A \beta, \underbrace{A\left(X^{\prime} X\right)^{-1} A^{\prime}}_{B} \sigma^{2})
$$

let $Z=\hat{A \beta}-c$ then $\operatorname{Var}(Z)=B \sigma^{2}$ we have

$$
\begin{aligned}
E\left(R S S_{H}-R S S\right) & =E\left[(A \hat{\beta}-c)^{\prime}\left[A(X X)^{-1} A^{\prime}\right]^{-1}(A \hat{\beta}-c)\right]=E\left[Z^{\prime} B^{-1} Z\right] \\
& =\operatorname{tr}\left(\sigma^{2} B^{-1} B\right)+(A \beta-c)^{\prime} B^{-1}(A \beta-c) \\
& =\operatorname{tr}\left(\sigma^{2} I_{q \times q}\right)+(A \beta-c)^{\prime} B^{-1}(A \beta-c) \\
& =\sigma^{2} q+(A \beta-c)^{\prime}\left[A\left(X^{\prime} X^{-1}\right) A^{\prime}\right]^{-1}(A \beta-c)
\end{aligned}
$$

the second equation is proved
$H_{0}: A \beta=c$, under $H_{0}, A \hat{\beta} \sim N\left(c=A \beta, \sigma^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime}\right)$ thus

$$
(A \hat{\beta}-c)^{\prime}\left[\sigma^{2} A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(A \hat{\beta}-c)=\frac{R S S H-R S S}{\sigma^{2}} \sim \chi_{q}^{2}
$$

we also have

$$
\frac{\mathrm{RSS}}{\sigma^{2}} \sim \chi_{n-p}^{2}
$$

and previously we learned that RSS is independent of $\hat{\beta}$, thus $\operatorname{RSS}_{H}-\operatorname{RSS} \perp \operatorname{RSS}$. Therefore,

$$
\frac{\operatorname{RSS}_{H}-\operatorname{RSS} /\left(\sigma^{2} / q\right) \sim \chi_{q}^{2}}{\operatorname{RSS} /\left(\sigma^{2} /(n-p)\right) \sim \chi_{n-p}^{2}}>\text { independence } \Longrightarrow \sim \mathrm{F}_{q, n-p}
$$

the third equation is proved
when $c=0$,

$$
\begin{aligned}
\hat{Y}_{H} & =X \hat{\beta}_{H}=X\left[\hat{\beta}+\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1}(c-A \hat{\beta})\right] \\
& =P Y-\underbrace{X\left(X^{\prime} X\right)^{-1} A^{\prime}\left[A\left(X^{\prime} X\right)^{-1} A^{\prime}\right]^{-1} A\left(X^{\prime} X\right)^{-1} X^{\prime} Y}_{P_{1}} \\
& =(\underbrace{P-P_{1}}_{P_{H}}) Y
\end{aligned}
$$

here P_{H} is symmetric since we know P_{1} is symmetric and idempotent. We can also show $P_{1} P=P P_{1}=P_{1}$. Further, P_{H} is idempotent

$$
\begin{aligned}
P_{1}^{2}=\left(P-P_{1}\right)\left(P-P_{1}\right) & =P^{2}-P_{1} P-P P_{1}+P_{1}^{2} \\
& =P-2 P_{1}+P_{1}=P-P_{1}=P_{H}
\end{aligned}
$$

also $P P_{H}=P_{H}$ and

$$
\begin{aligned}
& R S S_{H}=\left\|Y-X \hat{\beta}_{H}\right\|^{2}=\left\|Y-P_{H} Y\right\|^{2}=Y^{\prime}\left(I-P_{H}\right) Y \\
& \operatorname{RSS}=Y^{\prime}(I-P) Y
\end{aligned}
$$

6 Some comments about ANOVA

Consider one-way ANOVA
simple mean

$\operatorname{trt} 1$	$Y_{11}, Y_{12}, \ldots, Y_{1, J_{1}}$	\bar{y}_{1}
$\operatorname{trt} 2$	$Y_{21}, Y_{22}, \ldots, Y_{2, J_{2}}$	\bar{y}_{2}
\vdots	\vdots	\vdots
$\operatorname{trt~I}$	$Y_{I 1}, Y_{I 2}, \ldots, Y_{I, J_{I}}$	\bar{y}_{I}

the model is $Y_{i j}=\mu_{i}+\varepsilon_{i j} \quad, \quad\left(i=1,2, \ldots, I, j=1, \ldots, J_{i}\right), \beta=\left(\begin{array}{c}\mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{I}\end{array}\right) \quad$, assume $\varepsilon_{i j} \sim N\left(0, \sigma^{2}\right)$, then we can write as $\left|\begin{array}{c}y_{11} \\ \vdots \\ y_{1, J_{1}} \\ y_{21} \\ \vdots \\ y_{2, J_{2}} \\ \vdots \\ y_{I 1} \\ \vdots \\ y_{I, J_{I}}\end{array}\right|=\left[\begin{array}{ccccc}1 & 0 & 0 & \cdots & 0 \\ & & & \vdots & \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ & & & \vdots & \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ & & & \vdots & \\ 0 & 0 & 0 & \cdots & 1\end{array}\right]\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{2} \\ \mu_{I}\end{array}\right], \Rightarrow X=\left[\begin{array}{cccc}\mathbb{1}_{J_{1}} & \mathbb{O}_{J_{1}} & \cdots & \mathbb{O}_{J_{1}} \\ \mathbb{O}_{J_{2}} & \mathbb{1}_{J_{2}} & \cdots & \mathbb{O}_{J_{2}} \\ & & \vdots & \\ \mathbb{O}_{J_{I}} & \mathbb{O}_{J_{I}} & \cdots & \mathbb{1}_{J_{I}}\end{array}\right]$. To test hypoth-
esis, $H_{0}: \mu_{1}=\mu_{2}=\cdots=\mu_{I}$ (testable since X is full rank) $A \beta=0 \quad \Leftrightarrow\left(\begin{array}{ccccc}1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ 0 & 0 & 1 & -1 & \cdots \\ 0 & & & & \\ & & \vdots & & \\ 0 & 0 & 0 & 1 & -1\end{array}\right) \beta=0$. Then proceed with usual F-test $F=\frac{\left(\mathrm{RSS}_{\mathrm{H}}-\mathrm{RSS}\right) /(\mathrm{I}-1)}{\mathrm{RSS} /(\mathrm{n}-\mathrm{I})}$. ALTERNATIVELY, we can write $S=\sum_{i} \sum_{j}\left(y_{i j}-\mu_{i}\right)^{2}$, where S is the error sum of squared $\epsilon_{i j}^{2}, \frac{\partial S}{\partial \mu_{i}}=0 \Rightarrow \sum_{j} 2\left(y_{i j}-\mu_{i}\right)=0 \Rightarrow \mu_{i}=\frac{\sum_{j} y_{i j}}{J_{i}}=\overline{y_{i}}$, RSS $=$ $\sum_{i} \sum_{j}\left(y_{i j}-\hat{\mu}_{i}\right)^{2}=\sum_{i} \sum_{j}\left(y_{i j}-\bar{y}_{i}\right)^{2}$ and under $H_{0} S=\sum_{i} \sum_{j}\left(y_{i j}-\mu\right)^{2}-$ error sum of squared, $\frac{\partial S}{\partial \mu}=$ $0 \Rightarrow \sum_{i} \sum_{j}\left(y_{i j}-\mu\right)=0 \Rightarrow \hat{\mu}=\frac{\sum_{i} \sum_{j}\left(y_{i j}\right)}{\sum_{i} J_{i}}=\bar{Y} \leftarrow$ overall mean. Thus $R S S_{H}=\sum_{i} \sum_{j}\left(y_{i j}-\hat{\mu}\right)^{2}=$ $\sum_{i} \sum_{j}\left(y_{i j}-\bar{Y}\right)^{2}$. Then $R S S_{H}-R S S=\sum_{i} \sum_{j}\left(\hat{y}_{i j}-\hat{y}_{H}\right)^{2}=\sum_{i} \sum_{j}\left(\bar{y}_{i}-\bar{Y}\right)^{2}=\sum_{i} J_{i}\left(\bar{y}_{i}-\bar{Y}\right)^{2}$. Therefore, using the F-test $F=\frac{\sum_{i} J_{i}\left(\bar{y}_{i}-\bar{Y}\right) /(I-1)}{\sum_{i} \sum_{j}\left(y_{i}-\bar{y}_{i}\right)^{2} /(n-I)} \quad, p=I, q=I-1$

